Certified Flight Instructor -Instrument (CFII) Oral Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. What color of lights indicates the last 3000 feet of a runway?
 - A. Red
 - **B.** White
 - C. Red and White
 - D. Green
- 2. What is the recommended action to take when encountering turbulence?
 - A. Ascend to a higher altitude
 - B. Bank left to avoid rough air
 - C. Slow down to V_A
 - D. Activate the autopilot
- 3. What action should be taken if an ADF receiver fails during flight?
 - A. Switch to VOR
 - B. Use GPS
 - C. Return to base
 - D. Ignore the failure
- 4. Which position is related to high-pitched dots during a flight?
 - A. Back course marker
 - B. Final approach fix
 - C. Threshold crossing height
 - D. Decision altitude
- 5. When is a pilot allowed to fly without an alternate airport?
 - A. When the destination has an IAP and is within the 1-2-3 rule
 - B. When filed flight plan confirms clear weather on arrival
 - C. When ATC provides specific instructions against filing an alternate
 - D. When the flight is under VFR conditions

- 6. What color is associated with the left position light on an aircraft?
 - A. Green
 - **B.** White
 - C. Red
 - D. Blue
- 7. What is the primary difference between a contact approach and a visual approach?
 - A. Contact approach is always ATC-run
 - B. ATC can assign a contact approach without pilot request
 - C. Visual approach requires minimum visibility
 - D. Contact approach requires pilot request
- 8. What is the takeoff visibility requirement for aircraft with two engines or less under Part 121, 125, 129, and 135?
 - A. 1 mile
 - B. 0.5 miles
 - C. 1.5 miles
 - D. Minimum visibility is not required
- 9. What does flight visibility refer to in aviation?
 - A. The height of the aircraft above sea level
 - B. The horizontal distance visible from the cockpit
 - C. The distance to the nearest airport
 - D. The vertical visibility through clouds
- 10. What does RNP stand for in aviation terminology?
 - A. Required Navigation Performance
 - **B. Recommended Navigation Procedure**
 - C. Radar Navigation Performance
 - **D. Radio Navigation Procedure**

Answers

- 1. C 2. C 3. B 4. A 5. A 6. C 7. D 8. A 9. B 10. A

Explanations

- 1. What color of lights indicates the last 3000 feet of a runway?
 - A. Red
 - **B.** White
 - C. Red and White
 - D. Green

The color of lights that indicates the last 3000 feet of a runway is a combination of red and white lights. These lights are part of the visual approach slope indicator systems, which help pilots identify their position in relation to the runway during landing. Specifically, the last 3000 feet of the runway is marked by red and white lights to signal that the aircraft is nearing the end of the runway and should be prepared for landing. The red lights indicate the area that is closer to the threshold, while the white lights typically signify sections of the runway that are further away. This combination provides essential visual cues for pilots to ensure they are approaching the runway at the correct altitude and distance for a safe landing. Flashing red lights, by contrast, are typically used to indicate caution areas, and white lights alone represent runway sections but do not provide the specific indication for the last 3000 feet where both red and white lights are crucial for situational awareness during the landing phase.

- 2. What is the recommended action to take when encountering turbulence?
 - A. Ascend to a higher altitude
 - B. Bank left to avoid rough air
 - C. Slow down to V A
 - D. Activate the autopilot

When encountering turbulence, slowing down to V_A , or maneuvering speed, is the appropriate action to take. V_A is designed to allow for better control of the aircraft in turbulent air while minimizing the structural loads imposed on the airframe. This speed is often lower than the aircraft's maximum speed and provides a safety buffer, allowing the pilot to maintain control without overstressing the aircraft. Slowing down can help maintain stability and control in bumpy air conditions, as well as increase the responsiveness of the controls. It also helps to protect the aircraft from excessive forces that can occur during turbulence, thus ensuring a safer flight experience. In contrast, other options like ascending to a higher altitude might not always yield a smoother ride since turbulence can occur at various altitudes. Banking left to avoid rough air could lead to misjudgment, as turbulence may not be easily avoidable by just changing the aircraft's direction, and activating the autopilot does not necessarily mitigate the effects of turbulence and can sometimes even complicate the pilot's response to the situation. Therefore, slowing to V_A is the most effective and recommended course of action when confronted with turbulence.

3. What action should be taken if an ADF receiver fails during flight?

- A. Switch to VOR
- **B.** Use GPS
- C. Return to base
- D. Ignore the failure

If an Automatic Direction Finder (ADF) receiver fails during flight, utilizing GPS as an alternative navigation method is a valid response. GPS provides precise positioning information and can be used effectively to maintain situational awareness and navigation, especially when flying under instrument flight rules (IFR). When an ADF fails, it is crucial to have a backup navigation source to ensure that the flight can continue safely to the intended destination or alternate. GPS systems are widely available in modern aircraft and offer reliable navigation capabilities, including route planning and real-time location tracking. Switching to VOR could also be a viable option, but the preference for GPS stems from its enhanced functionality and accuracy in many cases. Returning to base may not be practical or necessary unless the failure compromises the flight's safety significantly. Ignoring the failure is not advisable, as it leaves the pilot without an important navigational tool, potentially jeopardizing the flight.

4. Which position is related to high-pitched dots during a flight?

- A. Back course marker
- B. Final approach fix
- C. Threshold crossing height
- D. Decision altitude

The position related to high-pitched dots during a flight is known as the back course marker. In the context of an instrument landing system (ILS), a back course marker is an indication on the approach that helps pilots locate the localizer's position during a back course approach. When a pilot is approaching the back course path, audio alerts, which may include high-pitched tones, seem to indicate proximity to the marker, aiding with situational awareness. The other choices refer to different critical aspects of the approach and landing phase. The final approach fix denotes the point in an instrument approach where the aircraft is established on the final approach course, often marked by a decision altitude or a specific glide path. Threshold crossing height is the height above the runway threshold at which an aircraft should cross during landing stabilization. Decision altitude refers to the minimum altitude for an approach where a pilot must decide to continue the approach or execute a missed approach. While all these points are essential for safe instrument approaches, they do not specifically relate to the high-pitched tone associated with proximity to the back course marker.

5. When is a pilot allowed to fly without an alternate airport?

- A. When the destination has an IAP and is within the 1-2-3 rule
- B. When filed flight plan confirms clear weather on arrival
- C. When ATC provides specific instructions against filing an alternate
- D. When the flight is under VFR conditions

A pilot is allowed to fly without an alternate airport when the destination airport has an Instrument Approach Procedure (IAP) and meets the requirements of the "1-2-3 rule." This rule states that if the weather conditions at the destination airport are forecasted to be at or above certain minimums—specifically, if the destination is within one hour of the estimated time of arrival, the forecast visibility is at least 2 statute miles, and the ceiling is at least 1,000 feet above the airport elevation—then an alternate is not required. This rule is part of the FAA regulations that help ensure that pilots can safely plan their routes based on current and predicted weather conditions. The other options do not provide a valid basis for bypassing the alternate airport requirement. Simply having clear weather on arrival does not guarantee that the flight can be conducted safely without an alternate, nor does it align with established regulations. Additionally, ATC instructions regarding filing alternates are not a standard rule and typically do not change the FAA's requirement for an alternate airport based on weather. Finally, flying under VFR conditions does not apply, as it pertains to visual flight rules where alternate requirements are still dictated by the regulations applicable to instrument flight plans.

6. What color is associated with the left position light on an aircraft?

- A. Green
- **B.** White
- C. Red
- D. Blue

The left position light on an aircraft is specifically associated with the color red. This color-coding is standardized to help maintain uniformity and safety in aviation. The position lights on an aircraft serve critical functions in enhancing visibility, particularly during nighttime operations or low visibility conditions. The left position light being red is part of a system where the right position light is green, and the tail light is white. This color scheme is essential for other pilots to easily identify the orientation of an aircraft. For instance, if you are approaching an aircraft from the front and see the red light on the left wing, you can be assured of the aircraft's left side orientation. Understanding this color coding is crucial for pilots, especially during night flying or when flying in formation, as it helps with spatial awareness and collision avoidance.

- 7. What is the primary difference between a contact approach and a visual approach?
 - A. Contact approach is always ATC-run
 - B. ATC can assign a contact approach without pilot request
 - C. Visual approach requires minimum visibility
 - D. Contact approach requires pilot request

The primary distinction between a contact approach and a visual approach lies in the requirement for pilot action in requesting the procedure. A contact approach is a procedure that must be requested by the pilot and cannot be initiated without such a request, which makes the pilot's initiative crucial. This approach allows pilots to proceed to the airport under visual flight rules once they are in visual contact with the runway environment, even if they are not receiving the standard visual flight rules clearance typically required for a visual approach. In contrast, a visual approach can be assigned by air traffic control (ATC) without any request from the pilot, as long as certain criteria, such as visibility requirements, are met. Visual approaches are often utilized to expedite landing when weather conditions permit. It is also essential to note that there are visibility requirements for visual approaches, but in the case of a contact approach, those specific visibility criteria are not a determining factor; instead, the request from the pilot is the primary condition. Therefore, understanding this key requirement differentiates the two approaches comprehensively.

- 8. What is the takeoff visibility requirement for aircraft with two engines or less under Part 121, 125, 129, and 135?
 - A. 1 mile
 - B. 0.5 miles
 - C. 1.5 miles
 - D. Minimum visibility is not required

The takeoff visibility requirement for aircraft with two engines or less under Part 121, 125, 129, and 135 is indeed 1 mile. This regulation is designed to ensure that pilots have sufficient visual references for safe operations during takeoff. The visibility standard of 1 mile is deemed necessary to allow pilots adequate time to see the runway environment, manage the aircraft's ascent safely, and make effective decisions in case of engine failure or other emergencies during the critical phase of takeoff. In situations where visibility is below this threshold, additional procedures or requirements typically apply. For example, if visibility is less than 1 mile, pilots may be required to utilize instrument flight rules (IFR) and follow specific guidance, such as performing a low visibility takeoff if appropriately certified. The other options do not reflect the specific regulatory guidance for visibility requirements for multi-engine aircraft under the respective parts, which set a clear baseline for safety standards during takeoff operations.

9. What does flight visibility refer to in aviation?

- A. The height of the aircraft above sea level
- B. The horizontal distance visible from the cockpit
- C. The distance to the nearest airport
- D. The vertical visibility through clouds

Flight visibility in aviation specifically refers to the horizontal distance that a pilot can clearly see from the cockpit while in flight. This measurement is critical for navigation and safe operation, as it helps pilots determine their ability to see and avoid other aircraft, obstacles, and terrain in their vicinity. The importance of maintaining adequate flight visibility is especially highlighted during instrument approaches and landings, where the pilot relies heavily on visual references to ensure a safe flight path. This is why pilots must be aware of the flight visibility conditions and how they may affect flight operations, particularly in varying weather situations. The other options do address relevant concepts in aviation, but they do not define flight visibility accurately. For example, the height of an aircraft above sea level, the distance to the nearest airport, and vertical visibility through clouds pertain to different aspects of flight operations and are not synonymous with flight visibility.

10. What does RNP stand for in aviation terminology?

- A. Required Navigation Performance
- **B. Recommended Navigation Procedure**
- C. Radar Navigation Performance
- **D. Radio Navigation Procedure**

RNP stands for Required Navigation Performance. This term is critical in aviation as it relates to the capability of an aircraft to follow a predetermined flight path with a specific level of accuracy as defined by the navigation specifications. The RNP concept allows for more flexible and efficient use of airspace, enabling optimized approach and departure routes, which can lead to reductions in fuel consumption and flight times. RNP requires the aircraft to meet certain performance standards during its flight, often utilizing advanced navigational technologies such as GPS and inertial navigation systems. It is important for flight planning and air traffic management, ensuring that all aircraft in a defined area can safely navigate their routes. The other terms listed do not accurately capture the essence of RNP. Recommended Navigation Procedure would imply guidelines rather than strict performance requirements; Radar Navigation Performance and Radio Navigation Procedure do not reflect the established framework that RNP represents in operational environments. Therefore, understanding RNP is essential for both pilots and air traffic controllers in managing efficient and safe flight operations.