

Certified Flight Instructor - Flight Instructor Airplane Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What does an alternating red and green light directed at you from the control tower indicate?**
 - A. Exercise extreme caution.**
 - B. Give way to other aircraft; continue circling.**
 - C. Return for landing; expect steady green light at proper time.**

- 2. What airspeed indicator marking identifies the maximum structural cruising speed of an aircraft?**
 - A. Red radial line.**
 - B. Upper limit of the green arc.**
 - C. Upper limit of the yellow arc.**
 - D. Lower limit of the white arc.**

- 3. If an aircraft is not equipped for night flight and official sunset is 1730 EST, the latest a pilot may operate that aircraft without violating regulations is?**
 - A. 1629 EST.**
 - B. 1729 EST.**
 - C. 1829 EST.**
 - D. 1800 EST.**

- 4. As altitude increases, the indicated airspeed at which a given airplane stalls in a particular configuration will?**
 - A. Remain the same as at low altitude.**
 - B. Decrease as the true airspeed increases.**
 - C. Increase because the air density decreases.**
 - D. Become more variable with temperature changes.**

- 5. A flight review requires what minimum training components?**
 - A. 1 hour ground and 1 hour flight training**
 - B. 1 hour flight time with three takeoffs and landings**
 - C. Review of maneuvers only**
 - D. Written test only**

6. What physical change is likely for occupants of an unpressurized aircraft flying above 15,000 feet?

- A. Gases trapped in the body contract and prevent nitrogen from escaping.**
- B. The pressure in the middle ear becomes equal to atmospheric pressure.**
- C. A blue coloration of the lips and fingernails develops along with tunnel vision.**
- D. Increased body temperature due to decreased pressure.**

7. Which of the following situations indicates a steep spiral?

- A. Stalled wing**
- B. Yawing motion**
- C. Rapid descent rate**
- D. High input of aileron**

8. Fouling of spark plugs is more likely to occur if the aircraft:

- A. Gains altitude with no mixture adjustment**
- B. Descends from altitude with no mixture adjustment**
- C. Throttle is advanced very abruptly**
- D. Idles for a long period of time**

9. What is the approximate lift/drag ratio at a 2° angle of attack compared to a 17.2° angle of attack?

- A. 9.75° angle of attack**
- B. 10.5° angle of attack**
- C. 17.2° angle of attack**
- D. 20.0° angle of attack**

10. Which statement about advection fog is true?

- A. It primarily forms during the night**
- B. It forms from unstable air cooling adiabatically**
- C. It can develop rapidly and is more persistent than radiation fog**
- D. It is only present in coastal regions**

Answers

SAMPLE

1. A
2. B
3. B
4. A
5. A
6. C
7. A
8. A
9. C
10. C

SAMPLE

Explanations

SAMPLE

1. What does an alternating red and green light directed at you from the control tower indicate?

- A. Exercise extreme caution.**
- B. Give way to other aircraft; continue circling.**
- C. Return for landing; expect steady green light at proper time.**

An alternating red and green light directed at you from the control tower indicates that you should exercise extreme caution. This signal informs pilots that there may be an abnormal situation that requires heightened awareness. It is typically used in scenarios such as a potential collision course with another aircraft or during some emergency situations in the vicinity. Understanding the context of the other signals is essential as well. A steady green light, for example, signifies that it's safe for a pilot to proceed or land, while a red light indicates that the pilot must stop. This is why the response indicating the need to exercise extreme caution is the most appropriate interpretation of an alternating red and green light signal. It emphasizes the need for increased attention and readiness to circle or take other appropriate actions based on changing circumstances.

2. What airspeed indicator marking identifies the maximum structural cruising speed of an aircraft?

- A. Red radial line.**
- B. Upper limit of the green arc.**
- C. Upper limit of the yellow arc.**
- D. Lower limit of the white arc.**

The maximum structural cruising speed, often referred to as VNO, is indicated on the airspeed indicator by the upper limit of the green arc. This marking serves as a critical parameter for pilots, as it indicates the highest speed at which the aircraft can safely be flown in turbulent air. Operating above this speed could lead to structural stress and potential failure, especially in rough conditions. The green arc represents the normal operating range of speeds for the aircraft, and VNO is the threshold between normal flight and maneuvering speeds where caution is advised. Other markings on the airspeed indicator serve different purposes: the red radial line typically denotes VNE (never exceed speed), the upper limit of the yellow arc indicates the maximum operating maneuvering speed, and the lower limit of the white arc represents stall speed in a specified configuration. Each marking provides essential information for safe operation, but for identifying the maximum structural cruising speed, the upper limit of the green arc is the correct reference.

3. If an aircraft is not equipped for night flight and official sunset is 1730 EST, the latest a pilot may operate that aircraft without violating regulations is?

- A. 1629 EST.**
- B. 1729 EST.**
- C. 1829 EST.**
- D. 1800 EST.**

The correct answer is based on the regulations governing flight operations for aircraft that are not equipped for night flying. According to FAA regulations, a pilot may not operate an aircraft at night unless it is equipped for such operation. Night is defined as the time between the end of civil twilight and the beginning of civil twilight the following day. Civil twilight ends when the sun is 6 degrees below the horizon. Official sunset, which is stated as 1730 EST, marks the beginning of night. Therefore, the latest time a pilot could operate an unqualified aircraft would be just before sunset, which is one minute before 1730 EST. This means the last allowable time for operation without violating regulations would be 1729 EST. By deciding the last moment one could operate without equipment for night flying, pilots ensure compliance with safety regulations, reflecting the importance of understanding both the limitations of their aircraft and the operational standards set by aviation governing bodies.

4. As altitude increases, the indicated airspeed at which a given airplane stalls in a particular configuration will?

- A. Remain the same as at low altitude.**
- B. Decrease as the true airspeed increases.**
- C. Increase because the air density decreases.**
- D. Become more variable with temperature changes.**

As altitude increases, the stall speed of an airplane in a particular configuration will indeed remain the same in terms of indicated airspeed. The stall speed is primarily a function of the aircraft's weight and its configuration (e.g., flaps extended or retracted). What changes with altitude is the air density, which affects true airspeed. As altitude increases, air density decreases, leading to a higher true airspeed at which the airplane will actually stall. However, indicated airspeed—that is, the reading on the airspeed indicator—remains consistent for a given configuration and weight of the aircraft regardless of the altitude. This means that pilots can rely on the same stall warning at any altitude, as the indicated stall speed does not change. This concept is critical for pilots to understand, as they must be able to recognize stall speeds through the instruments they are trained to use, ensuring safety and consistent handling characteristics of the aircraft in various altitudes.

5. A flight review requires what minimum training components?

- A. 1 hour ground and 1 hour flight training**
- B. 1 hour flight time with three takeoffs and landings**
- C. Review of maneuvers only**
- D. Written test only**

The requirement for a flight review includes a minimum of 1 hour of ground training and 1 hour of flight training. This structure is designed to ensure that the pilot not only refreshes their knowledge of the theoretical aspects of flight, which is covered during ground training, but also practices the practical skills required for safe operation of the aircraft during the flight portion. The ground training typically encompasses a review of regulations, flight maneuvers, and safety practices, while the flight training involves hands-on practice to demonstrate proficiency in flying the aircraft. This dual-component approach ensures that pilots are well-rounded and current in both knowledge and practical aviation skills. The other options do not meet the criteria set forth by the Federal Aviation Administration (FAA) for a flight review. For instance, the requirement for flight time with specific maneuvers, or a focus solely on maneuvers, would not encompass the broader aspects of pilot training and safety that the flight review aims to achieve.

6. What physical change is likely for occupants of an unpressurized aircraft flying above 15,000 feet?

- A. Gases trapped in the body contract and prevent nitrogen from escaping.**
- B. The pressure in the middle ear becomes equal to atmospheric pressure.**
- C. A blue coloration of the lips and fingernails develops along with tunnel vision.**
- D. Increased body temperature due to decreased pressure.**

At altitudes above 15,000 feet in an unpressurized aircraft, occupants are likely to experience hypoxia due to reduced atmospheric pressure and availability of oxygen. As altitude increases, the partial pressure of oxygen decreases, and the body's ability to absorb sufficient oxygen can diminish. This can lead to symptoms including a blue coloration of the lips and fingernails, known as cyanosis, which occurs because of insufficient oxygen in the blood. Additionally, tunnel vision can result from the effects of low oxygen levels on the brain. Thus, the correct answer indicates significant physiological responses to inadequate oxygen levels at high altitudes. The other options presented focus on different aspects of human physiology that do not accurately describe the effects experienced at high altitudes. For instance, gases in the body do not contract in a way that would prevent nitrogen from escaping, and the pressure in the middle ear does not always equalize with atmospheric pressure during rapid climbs or descents. Also, decreased pressure does not directly increase body temperature; rather, thermoregulation and other factors can come into play that do not lead to a direct increase in body temperature due to altitude.

7. Which of the following situations indicates a steep spiral?

- A. Stalled wing**
- B. Yawing motion**
- C. Rapid descent rate**
- D. High input of aileron**

A steep spiral is characterized by a rapid descent rate coupled with a coordinated turn. It typically occurs when an aircraft is in a configuration that allows for enhanced descent while maintaining control inputs appropriate for maneuvering. When looking at a stalled wing, although a stalled condition can lead to a loss of control and might contribute to a steep spiral, it is not the defining characteristic. A steep spiral involves a controlled descent in a turning flight path, which is not the primary descriptor of a stalled wing. In contrast, a rapid descent rate is a more direct indicator of a steep spiral. This descent rate happens when the aircraft is turning, resulting in high vertical speed while maintaining a coordinated bank. Additionally, yawing motion is not a reliable measure since it may refer to other aerodynamic issues, such as insufficient airspeed or inadequate control inputs, which could lead to a stall or an uncoordinated turn without a steep spiral indication. The high input of aileron could also suggest a pilot's attempt to maintain a desired bank angle in a turn, but that alone does not qualify as the definitive sign of a steep spiral without the accompanying rapid descent rate during a coordinated maneuver. Therefore, the rapid descent rate operates as the most pertinent factor in identifying a steep

8. Fouling of spark plugs is more likely to occur if the aircraft:

- A. Gains altitude with no mixture adjustment**
- B. Descends from altitude with no mixture adjustment**
- C. Throttle is advanced very abruptly**
- D. Idles for a long period of time**

Fouling of spark plugs in an aircraft engine typically occurs when the fuel-air mixture is too rich, which leads to excess fuel condensing on the spark plugs and forming deposits. This can hinder proper ignition and engine performance. When an aircraft gains altitude, the density of the air decreases, which means that the mixture should ideally become leaner to compensate for the reduced oxygen availability. If the mixture control is not adjusted accordingly while climbing, the engine continues to receive a richer mixture than optimal. This rich condition can result in unburned fuel making its way to the spark plugs, ultimately leading to fouling. In contrast, during a descent, the air density increases, and generally, the engine's mixture becomes closer to optimal without adjustments, which reduces the likelihood of fouling. Abruptly advancing the throttle can momentarily lead to a rich mixture, but this is typically not prolonged enough to cause significant fouling. Idling for extended periods can also contribute to fouling due to low engine temperatures and incomplete combustion, but in the context of altitude gain without mixture adjustment, the direct and immediate impact of a rich mixture makes it more likely to lead to fouling.

9. What is the approximate lift/drag ratio at a 2° angle of attack compared to a 17.2° angle of attack?

- A. 9.75° angle of attack**
- B. 10.5° angle of attack**
- C. 17.2° angle of attack**
- D. 20.0° angle of attack**

The lift-to-drag ratio is a critical parameter in aerodynamics that varies with the angle of attack. At lower angles of attack, such as 2°, the aircraft generally experiences a relatively high lift-to-drag ratio due to efficient airflow over the wings and lower induced drag. As the angle of attack increases, like at 17.2°, the lift-to-drag ratio begins to decrease due to increased drag from flow separation and turbulence, which occur as the wings operate beyond their optimal angle of attack. By comparing these two angles, it is understood that while the lift-to-drag ratio at the lower angle (2°) is more favorable, the lift-to-drag ratio at the higher angle (17.2°) is less efficient due to the factors mentioned. Generally, the exact lift-to-drag ratios can be situation-specific and depend on the airfoil design, Reynolds numbers, and other aerodynamic considerations. Thus, interpreting the surrounding context of the question indicates that the approximate lift-to-drag ratio at 2° is indeed much higher than that at 17.2°. This understanding confirms that the greater angle (17.2°) reflects a benchmark for comparison, supporting choice C as the appropriate selection for understanding the relative aer

10. Which statement about advection fog is true?

- A. It primarily forms during the night**
- B. It forms from unstable air cooling adiabatically**
- C. It can develop rapidly and is more persistent than radiation fog**
- D. It is only present in coastal regions**

Advection fog is a type of fog that occurs when warm, moist air moves horizontally over a cooler surface, such as land or water, causing the air to cool and reach its dew point. This process can lead to the rapid formation of fog, especially in coastal areas where warm air from the ocean overlays cooler land. The persistence of advection fog is greater than that of radiation fog because it can remain in place for extended periods due to continued air movement and the differential temperatures between the incoming air and the surface, often resulting in a sustained fog condition. This contrasts with radiation fog, which is typically more transient and forms chiefly during the night when the ground cools quickly after sunset. While advection fog can occur in coastal regions, it is not restricted to them, as it can also form over inland areas if conditions are favorable. The suggestion that it primarily forms during the night or is only present in coastal regions does not accurately capture the broader conditions under which advection fog can develop. Thus, the statement that it can develop rapidly and is more persistent than radiation fog accurately reflects its characteristics.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://certifiedflightinstructor-flightinstructorairplane.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE