

Certification Board for Sterile Processing and Distribution (CBSPD)

Sterile Processing Technician Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. When testing a scissor for sharpness, what is an important step to take?**
 - A. Make one cut in the testing material**
 - B. Make several cuts in the testing material**
 - C. Look for rust on the blades**
 - D. Check the hinge for smoothness**
- 2. Which instrument is used to measure humidity in the Sterile Storage area?**
 - A. Hygrometer**
 - B. Thermometer**
 - C. Barometer**
 - D. Psychrometer**
- 3. In non-tabletop steam sterilizers, where should Process Challenge Devices (PCDs) be placed?**
 - A. Near the door**
 - B. On the upper shelf**
 - C. Over the drain**
 - D. In the center of the chamber**
- 4. Which of the following is true regarding ethylene oxide sterilization?**
 - A. It requires high temperature for effectiveness.**
 - B. It can damage moisture-sensitive instruments.**
 - C. It is used exclusively for surgical instruments.**
 - D. It takes longer than steam sterilization.**
- 5. When processing rigid containers in a steam sterilizer, how must they be positioned?**
 - A. Horizontally on the shelf**
 - B. Flat on the cart during sterilization**
 - C. Stacked securely**
 - D. Vertical with lids off**

6. What can cracked insulation on a laparoscopic instrument potentially cause?

- A. Signal interference**
- B. Electrical shock**
- C. Reduced effectiveness**
- D. Increased wear**

7. If a biological indicator is tested daily, how frequently must a control biological indicator be incubated?

- A. Once a week, regardless of lot number**
- B. Once a day, especially with new lot numbers**
- C. Twice a week, for reliability**
- D. Once per shift**

8. Which type of microorganism can slow down its metabolism and enter a dormant state?

- A. Gram-Negative Cocci**
- B. Gram-Positive Bacillus**
- C. Gram-Negative Bacillus**
- D. Gram-Positive Cocci**

9. What is the maximum relative humidity permitted in the Sterile Storage area?

- A. 60%**
- B. 70%**
- C. 80%**
- D. 90%**

10. What is a distinguishing feature of anaerobes in terms of oxygen requirement?

- A. They thrived in environments rich in oxygen.**
- B. They can survive in the absence of oxygen.**
- C. They require very low levels of oxygen.**
- D. They are incapable of fermentation.**

Answers

SAMPLE

1. B
2. A
3. D
4. D
5. B
6. B
7. B
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. When testing a scissor for sharpness, what is an important step to take?

- A. Make one cut in the testing material**
- B. Make several cuts in the testing material**
- C. Look for rust on the blades**
- D. Check the hinge for smoothness**

To determine the sharpness of a scissor effectively, making several cuts in the testing material is crucial. This approach provides a comprehensive assessment of the scissor's cutting performance. A single cut might not yield enough information about the sharpness, as it could be influenced by various factors such as the angle of the cut or the type of material being used. By performing multiple cuts, you can better evaluate the consistency and effectiveness of the blade throughout its range of motion. Assessing sharpness involves observing how easily the scissors can slice through the material on multiple attempts, confirming that they maintain efficiency and do not struggle during cutting. This method allows for a more reliable gauge of the tools' condition, as varying the pressure applied and the speed of the cuts can also reveal any deficiencies that might not be apparent with just one attempt.

2. Which instrument is used to measure humidity in the Sterile Storage area?

- A. Hygrometer**
- B. Thermometer**
- C. Barometer**
- D. Psychrometer**

The instrument used to measure humidity in the Sterile Storage area is a hygrometer. This device specifically assesses the amount of moisture in the air, which is crucial in maintaining proper conditions for sterile items. Humidity levels are important because they can affect the integrity and sterility of the medical supplies being stored. If the humidity is too high, it can promote the growth of mold and bacteria, while too low humidity might desiccate certain materials or cause plastic wrapping to become brittle. While thermometers measure temperature, barometers assess atmospheric pressure, and psychrometers determine humidity through the use of two thermometers (one dry and one wet), the hygrometer is the dedicated instrument that directly provides humidity readings, making it the most suitable choice for this specific application within the Sterile Storage area.

3. In non-tabletop steam sterilizers, where should Process Challenge Devices (PCDs) be placed?

- A. Near the door**
- B. On the upper shelf**
- C. Over the drain**
- D. In the center of the chamber**

Process Challenge Devices (PCDs) are crucial for validating the sterilization process in steam sterilizers. They are designed to mimic the physical and biological characteristics of a load to determine whether the sterilization parameters have been achieved effectively. Placing PCDs in the center of the chamber is the most effective position because this location allows for optimal exposure to the steam and ensures that the conditions necessary for sterilization are uniform throughout the entire chamber. The center typically has the best steam penetration and heat distribution, which are critical for the efficacy of the sterilization process. In non-tabletop steam sterilizers, the positions near the door or over the drain may create areas of inadequate steam or heat distribution, which could lead to ineffective sterilization results. Similarly, placing PCDs on the upper shelf could also result in inadequate steam contact, making the center of the chamber the ideal location for reliable sterilization monitoring.

4. Which of the following is true regarding ethylene oxide sterilization?

- A. It requires high temperature for effectiveness.**
- B. It can damage moisture-sensitive instruments.**
- C. It is used exclusively for surgical instruments.**
- D. It takes longer than steam sterilization.**

Ethylene oxide sterilization is a process that typically requires longer exposure times than steam sterilization. This is primarily because ethylene oxide (EO) relies on gas diffusion and the sterilization cycle is designed to ensure adequate contact time with all surfaces of the items being sterilized. The overall cycle includes phases such as preconditioning, exposure, and aeration, which are essential for effectively sterilizing the items. The longer duration of the ethylene oxide process compared to steam sterilization is also important due to the additional time needed for the gas to penetrate packaging materials and reach all areas of the instruments being sterilized. In contrast, steam sterilization usually operates at higher temperatures and relies on moisture to effectively kill microorganisms within a shorter time frame. Understanding the time differences between these methods is crucial for sterile processing technicians to ensure that surgical instruments are sterilized effectively while scheduling and workflow needs are met.

5. When processing rigid containers in a steam sterilizer, how must they be positioned?

- A. Horizontally on the shelf**
- B. Flat on the cart during sterilization**
- C. Stacked securely**
- D. Vertical with lids off**

The correct positioning of rigid containers in a steam sterilizer is flat on the cart during sterilization. This orientation allows for optimal steam circulation and contact with the contents of the containers, ensuring that all surfaces are exposed to the sterilizing conditions. When containers are placed horizontally, such as on a shelf or cart, they facilitate the free flow of steam and prevent the trapping of air pockets, which could impede effective sterilization. Additionally, placing the containers flat helps to maintain stability and prevents them from toppling over during the sterilization cycle, reducing the risk of contamination post-sterilization. In contrast, other arrangements may create barriers to steam penetration or increase the risk of mishaps during the sterilization process. For instance, stacking containers might lead to inconsistent steam penetration and increase the chance of some surfaces remaining unsterilized. Similarly, vertical positioning with lids off could expose the contents to potential contamination, and if not well secured, it increases the risk of spills or tipping during sterilization cycles.

6. What can cracked insulation on a laparoscopic instrument potentially cause?

- A. Signal interference**
- B. Electrical shock**
- C. Reduced effectiveness**
- D. Increased wear**

Cracked insulation on a laparoscopic instrument can potentially lead to electrical shock. Insulation serves as a protective barrier, preventing the electrical components within the instrument from coming into contact with the user or patient. When that insulation is compromised, as evidenced by cracks, it can expose the live electrical parts. This exposure increases the risk of electric shock to anyone using the instrument, particularly if it is being handled while in use or if it comes into contact with bodily fluids that can conduct electricity. The other options do not capture the direct and immediate danger that cracked insulation presents. For instance, signal interference may occur in devices that rely on communication signals, but it is not applicable in the context of insulation integrity. Reduced effectiveness pertains more to functional efficiency rather than safety, and increased wear is more about physical deterioration over time rather than a flawless external environment. The primary concern with damaged insulation in this scenario centers around the safety risks associated with electrical shock.

7. If a biological indicator is tested daily, how frequently must a control biological indicator be incubated?

- A. Once a week, regardless of lot number**
- B. Once a day, especially with new lot numbers**
- C. Twice a week, for reliability**
- D. Once per shift**

The correct answer emphasizes the importance of incubating a control biological indicator once a day, particularly when new lot numbers are introduced. Biological indicators are used to monitor the effectiveness of sterilization processes, ensuring that the sterilization conditions achieved are sufficient to kill a specific number of spores. Daily incubation of a control biological indicator, especially with new lot numbers, allows for immediate verification of the sterilization process's reliability. This practice helps in identifying any potential issues that may arise from a particular lot of biological indicators, ensuring consistency in test results. If a new lot number is introduced, it is crucial to validate that the indicators are functioning correctly and that they provide accurate results in conjunction with the sterilization procedures being monitored. Frequent testing supports quality control and patient safety by allowing for prompt adjustments or interventions if a failure in sterilization is detected. Regular incubation of the control indicator is a best practice in sterile processing and distribution, reinforcing the need for assurance in the overall sterilization process.

8. Which type of microorganism can slow down its metabolism and enter a dormant state?

- A. Gram-Negative Cocci**
- B. Gram-Positive Bacillus**
- C. Gram-Negative Bacillus**
- D. Gram-Positive Cocci**

The option indicating Gram-Positive Bacillus is correct because this group of microorganisms, particularly species like *Bacillus anthracis* and *Bacillus cereus*, is known for its ability to form spores. The sporulation process allows these bacteria to enter a dormant state, significantly slowing down their metabolism and enabling them to survive in harsh environmental conditions for extended periods, sometimes even years. When conditions become favorable again, these spores can germinate and revert to a metabolically active state, allowing for growth and reproduction. This characteristic is particularly notable in Gram-positive bacilli due to their thick peptidoglycan cell wall, which aids in the formation and stability of the spores. Other types of microorganisms, while having various survival strategies, do not exhibit this same capacity to form spores and enter dormancy in the same way as Gram-Positive Bacillus. Thus, they may not withstand extreme environmental changes as effectively.

9. What is the maximum relative humidity permitted in the Sterile Storage area?

- A. 60%
- B. 70%**
- C. 80%
- D. 90%

The maximum relative humidity permitted in the sterile storage area is 70%. Maintaining the humidity at this level helps to prevent the growth of pathogens and the degradation of sterile items. Excessive humidity can increase the risk of microbial growth, which poses a risk to the sterility of the medical equipment and supplies, while also potentially leading to condensation that can damage packaging materials. In sterile processing, controlling environmental factors like humidity is critical to preserving the integrity of sterile items. If humidity levels exceed the recommended 70%, it could compromise not only the sterility of the items but also the quality of packaging materials, leading to potential breaches in sterility that could have serious implications for patient safety.

10. What is a distinguishing feature of anaerobes in terms of oxygen requirement?

- A. They thrived in environments rich in oxygen.
- B. They can survive in the absence of oxygen.**
- C. They require very low levels of oxygen.
- D. They are incapable of fermentation.

Anaerobes are distinguished by their ability to survive and thrive in environments devoid of oxygen. Unlike aerobes, which require oxygen for their metabolic processes, anaerobes can utilize alternative pathways for energy production that do not involve oxygen. This ability allows them to inhabit environments such as deep soils, the gastrointestinal tract of animals, and certain clinical settings, where oxygen levels are minimal or absent. In contrast, the other options do not accurately describe anaerobes. Those that thrive in environments rich in oxygen are classified as aerobes, while organisms that require very low levels of oxygen are classified as microaerophilic. Lastly, stating that anaerobes are incapable of fermentation is misleading, as many anaerobes utilize fermentation as a primary process for energy generation in the absence of oxygen. Hence, the defining characteristic of anaerobes is their capability to survive without oxygen.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://cbspd-technician.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE