

Certification Board for Sterile Processing and Distribution (CBSPD)

Sterile Processing Technician Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. If a non-perforated tray is used for the sterilization of instrument sets, how must it be positioned?**
 - A. Flat on the sterilizer rack**
 - B. Upright on the sterilizer rack**
 - C. Vertical in the sterilizer tray**
 - D. Tilted on the sterilizer rack**
- 2. Which of the following diseases is NOT caused by a virus?**
 - A. Flu**
 - B. CJD**
 - C. COVID-19**
 - D. HIV**
- 3. The MINIMUM time needed for effective hand washing is?**
 - A. 10 seconds**
 - B. 15 seconds**
 - C. 20 seconds**
 - D. 30 seconds**
- 4. During which stage of gas sterilization is the chamber evacuated?**
 - A. Exposure**
 - B. Evacuation**
 - C. Temperature Holding**
 - D. Cooling**
- 5. What is the highest allowable temperature in the Sterile Storage area?**
 - A. 65 deg F (18 deg C)**
 - B. 70 deg F (21 deg C)**
 - C. 75 deg F (24 deg C)**
 - D. 80 deg F (27 deg C)**

6. Which of the following bones is part of the axial skeleton?

- A. Humerus**
- B. Sternum**
- C. Fibula**
- D. Scapula**

7. What is used to verify that the sterilizer air removal mechanism is functioning properly?

- A. Bowie Dick Test**
- B. Chemical Indicator**
- C. Biological Indicator**
- D. Process Indicators**

8. What is the shape of Streptococcus bacteria?

- A. Spirally**
- B. Rod-shaped**
- C. Spherical**
- D. Chunky**

9. What can cracked insulation on a laparoscopic instrument potentially cause?

- A. Signal interference**
- B. Electrical shock**
- C. Reduced effectiveness**
- D. Increased wear**

10. What is the recommended practice for sterile trays that might be subjected to storage challenges?

- A. Store them in a cool area**
- B. Keep them in the original packaging**
- C. Place them in a sterility maintenance cover**
- D. Repurpose outdated trays**

Answers

SAMPLE

1. D
2. B
3. C
4. B
5. C
6. B
7. A
8. C
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. If a non-perforated tray is used for the sterilization of instrument sets, how must it be positioned?

- A. Flat on the sterilizer rack**
- B. Upright on the sterilizer rack**
- C. Vertical in the sterilizer tray**
- D. Tilted on the sterilizer rack**

For the sterilization of instrument sets in a non-perforated tray, positioning it tilted on the sterilizer rack is essential. This positioning allows for optimal steam penetration and drainage during the sterilization process. When the tray is tilted, it facilitates the movement of sterilizing agents and ensures that any condensate formed can effectively drain away from the instruments, preventing pooling of liquids that could hinder sterilization. In contrast, placing the tray flat or upright would limit steam circulation and could create areas where steam cannot adequately reach, leading to inefficient sterilization. Similarly, positioning the tray vertically in a way that doesn't allow for proper drainage could also compromise the effectiveness of the sterilization cycle. Ensuring that the tray is tilted maximizes the exposure of all surfaces of the instruments to the sterilizing agent, thereby increasing the likelihood of achieving effective sterilization outcomes.

2. Which of the following diseases is NOT caused by a virus?

- A. Flu**
- B. CJD**
- C. COVID-19**
- D. HIV**

Creutzfeldt-Jakob disease (CJD) is not caused by a virus but rather by prions. Prions are misfolded proteins that can induce other proteins to also misfold, leading to neurodegenerative diseases. CJD is part of a group of diseases known as transmissible spongiform encephalopathies, which include other conditions like mad cow disease. In contrast, the other diseases listed are all viral in nature. Influenza (Flu) is caused by the influenza virus, COVID-19 is caused by the coronavirus SARS-CoV-2, and human immunodeficiency virus (HIV) leads to acquired immunodeficiency syndrome (AIDS). Understanding the distinctions between viruses and prions is essential in sterile processing and infection control, as it influences the protocols for disinfection and sterilization of instruments that may come into contact with infected individuals.

3. The MINIMUM time needed for effective hand washing is?

- A. 10 seconds
- B. 15 seconds
- C. 20 seconds**
- D. 30 seconds

The minimum time needed for effective hand washing is generally recognized to be 20 seconds. This duration is important because research has shown that washing hands for at least 20 seconds significantly reduces the number of pathogens present on the skin. Shorter durations, such as 10 or 15 seconds, may not adequately remove all harmful microorganisms, which can lead to the persistence of bacteria and viruses that cause infections. The Centers for Disease Control and Prevention (CDC) recommends washing hands thoroughly with soap and water for at least 20 seconds to ensure thorough cleansing, which includes scrubbing all surfaces of the hands—between fingers, under nails, and around wrists. Therefore, the selection of 20 seconds aligns with established public health guidelines for hand hygiene in various settings, including healthcare and sterile processing environments.

4. During which stage of gas sterilization is the chamber evacuated?

- A. Exposure
- B. Evacuation**
- C. Temperature Holding
- D. Cooling

The stage of gas sterilization during which the chamber is evacuated is the evacuation phase. This process involves removing air from the chamber to create a vacuum. The purpose of this vacuum is to ensure that there are no air pockets that could interfere with the penetration of the sterilizing gas, such as ethylene oxide. During evacuation, the presence of air would prevent the gas from effectively contacting and sterilizing the items inside. Achieving a complete vacuum is crucial, as it prepares the environment for optimal gas distribution and absorption, which are vital for effective sterilization. Once the evacuation is complete, the exposure phase follows, where the sterilizing gas is introduced. This method ensures that the items receive the intended level of sterilization without obstructions that could arise from leftover air. The other stages, such as exposure, temperature holding, and cooling, take place subsequently and do not involve the removal of air from the chamber.

5. What is the highest allowable temperature in the Sterile Storage area?

- A. 65 deg F (18 deg C)
- B. 70 deg F (21 deg C)
- C. 75 deg F (24 deg C)**
- D. 80 deg F (27 deg C)

The highest allowable temperature in the Sterile Storage area is established to ensure the integrity and sterility of the items stored. Temperature regulation is crucial because higher temperatures can compromise the packaging and integrity of sterile supplies, potentially leading to contamination or reduced effectiveness. A temperature of 75 degrees Fahrenheit (24 degrees Celsius) is considered the maximum threshold, where the environment remains stable enough to maintain sterility without the risk of degradation of packaging materials or the items themselves. This specific standard is derived from best practices in sterile processing standards and guidelines, which prioritize safety and efficacy in patient care. In contrast, temperatures above this limit may lead to issues such as heat exposure impacting the materials used for packaging sterile instruments, which could diminish their barrier properties. Moreover, temperatures lower than the maximum threshold while still being within a safe range can help ensure environmental control, but exceeding the established limit can pose risks that sterile processing regulations aim to mitigate. Therefore, while there are guidelines for lower temperatures, the key threshold for the maximum allowable temperature is vital for maintaining the sterility of stored items.

6. Which of the following bones is part of the axial skeleton?

- A. Humerus
- B. Sternum**
- C. Fibula
- D. Scapula

The sternum is classified as part of the axial skeleton, which includes the bones that form the central axis of the body. The axial skeleton is comprised of the skull, vertebral column, ribs, and sternum. These structures primarily serve as protection for vital organs, support for the body, and attachment points for other bones. In contrast, the other choices represent bones from the appendicular skeleton, which consists of the limbs and the girdles that attach them to the axial skeleton. The humerus is located in the upper arm, the scapula is the shoulder blade, and the fibula is one of the bones in the lower leg. All of these bones assist in movement and structure of the limbs but are not considered part of the axial skeleton. Thus, recognizing the distinction between axial and appendicular skeletons is key to understanding human anatomy.

7. What is used to verify that the sterilizer air removal mechanism is functioning properly?

- A. Bowie Dick Test**
- B. Chemical Indicator**
- C. Biological Indicator**
- D. Process Indicators**

The Bowie Dick Test is specifically designed to assess the air removal capabilities of steam sterilizers, particularly those using vacuum-assisted technologies. This test involves placing a special test pack containing a sensitive indicator within the sterilizer chamber during a standard sterilization cycle. If the sterilizer effectively removes air and achieves proper steam penetration, the indicator will change color, indicating that the cycle was successful. This is critical because air pockets can prevent steam from contacting instruments and materials, which could lead to incomplete sterilization. Thus, the Bowie Dick Test serves as a routine assessment for sterilizers, ensuring that the equipment is functioning correctly and consistently achieving the desired sterilization parameters. It is a standard test used to validate the performance of steam sterilizers on a daily basis. Other options, while relevant to sterilization processes, serve different purposes. Chemical indicators indicate whether the sterilization conditions were met but do not specifically verify air removal. Biological indicators test the effectiveness of the sterilization process by using viable microorganisms, which is more about the effectiveness of sterilization rather than air removal. Process indicators typically just show that the package has been exposed to a sterilization process but lack specificity regarding the air removal mechanism.

8. What is the shape of Streptococcus bacteria?

- A. Spirally**
- B. Rod-shaped**
- C. Spherical**
- D. Chunky**

Streptococcus bacteria are classified as spherical in shape, which is referred to as "cocci." This characterizes them as part of the broader category of cocci bacteria, which can exist in various arrangements depending on their growth patterns. In the case of Streptococcus, they typically form chains or pairs due to their method of cell division, which involves fission in one plane only. Understanding the morphology of Streptococcus is important in microbiology and clinical settings, as the shape can influence how these bacteria are identified and classified. Spherical bacteria often respond differently to treatment and have distinct characteristics when compared to spirally or rod-shaped bacteria. Recognizing the specific shapes and arrangements of bacteria helps in laboratory identification and can aid in diagnosis, therefore, knowing that Streptococcus has a spherical shape is crucial for anyone studying or working within the field of sterile processing and microbiology.

9. What can cracked insulation on a laparoscopic instrument potentially cause?

- A. Signal interference**
- B. Electrical shock**
- C. Reduced effectiveness**
- D. Increased wear**

Cracked insulation on a laparoscopic instrument can potentially lead to electrical shock. Insulation serves as a protective barrier, preventing the electrical components within the instrument from coming into contact with the user or patient. When that insulation is compromised, as evidenced by cracks, it can expose the live electrical parts. This exposure increases the risk of electric shock to anyone using the instrument, particularly if it is being handled while in use or if it comes into contact with bodily fluids that can conduct electricity. The other options do not capture the direct and immediate danger that cracked insulation presents. For instance, signal interference may occur in devices that rely on communication signals, but it is not applicable in the context of insulation integrity. Reduced effectiveness pertains more to functional efficiency rather than safety, and increased wear is more about physical deterioration over time rather than a flawless external environment. The primary concern with damaged insulation in this scenario centers around the safety risks associated with electrical shock.

10. What is the recommended practice for sterile trays that might be subjected to storage challenges?

- A. Store them in a cool area**
- B. Keep them in the original packaging**
- C. Place them in a sterility maintenance cover**
- D. Repurpose outdated trays**

The recommended practice for sterile trays that might be subjected to storage challenges is to place them in a sterility maintenance cover. This is important because sterility maintenance covers help protect the contents of the tray from environmental contamination and moisture, which can compromise the sterility of instruments. These covers create a barrier that can extend the shelf life of the sterilized items inside, ensuring they remain sterile until they are needed for use. While storing trays in a cool area can be beneficial for some products to prevent degradation, it does not directly address the preservation of sterility. Keeping trays in their original packaging may offer some level of protection, but not as effectively as a sterility maintenance cover specifically designed for enhanced protection against contamination. Repurposing outdated trays is not advised, as it can lead to potential compromises in sterility or functionality, which can adversely affect patient safety and surgical outcomes. Therefore, utilizing sterility maintenance covers is the best practice for maintaining the sterility of instruments in challenging storage conditions.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://cbspd-technician.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE