

CASA Private Pilot License (PPL) Pre-License Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Questions

SAMPLE

- 1. What is the first action to take if experiencing low volts at high RPM?**
 - A. Turn on the altimeter**
 - B. Alt off**
 - C. Charge the battery**
 - D. Check fuel levels**
- 2. What should you check if you see a red X on an airspeed indicator?**
 - A. Replace the indicator**
 - B. Reset the circuit breaker**
 - C. Perform a system diagnostic**
 - D. Inspect wiring connections**
- 3. When performing an engine run-up, what is the purpose of checking magneto operation?**
 - A. To increase fuel efficiency**
 - B. To ensure proper engine functionality and avoid engine failure**
 - C. To assess the atmospheric pressure**
 - D. To check the aircraft's battery life**
- 4. Which of the following is NOT part of the aeronautical experience for a pilot not in an integrated program?**
 - A. 30 Hours Flight Time**
 - B. 40 Hours Aeronautical Experience**
 - C. 25 Hours Solo Flight Time**
 - D. 5 Hours Cross-Country Flight Time**
- 5. What is the recommended squawk code for flights over water outside of 15 nautical miles from land?**
 - A. 1200**
 - B. 4000**
 - C. 0100**
 - D. 3000**

6. What must a person do if they test positive for drug or alcohol use?

- A. Continue working as normal**
- B. Complete the DAMP and pass a retest**
- C. Appeal the test result**
- D. Inform their supervisor immediately**

7. What is the squawk code for day VFR flights in Australia?

- A. 3000**
- B. 0100**
- C. 1200**
- D. 4000**

8. What is the visibility requirement for issuing Special VFR?

- A. 800m visibility**
- B. 1,600m visibility**
- C. 2,000m visibility**
- D. No specific visibility requirement**

9. What altitude must a pilot maintain over congested areas?

- A. 500 feet above the highest obstacle**
- B. 1,000 feet above the highest obstacle**
- C. 1,500 feet above the highest obstacle**
- D. 2,000 feet above the highest obstacle**

10. When flying into Essendon, what is the appropriate squawk code?

- A. 4000**
- B. 0100**
- C. 3000**
- D. 1200**

Answers

SAMPLE

- 1. B**
- 2. B**
- 3. B**
- 4. C**
- 5. B**
- 6. B**
- 7. C**
- 8. B**
- 9. B**
- 10. C**

SAMPLE

Explanations

SAMPLE

1. What is the first action to take if experiencing low volts at high RPM?

- A. Turn on the altimeter
- B. Alt off**
- C. Charge the battery
- D. Check fuel levels

When experiencing low voltage indications at high RPM, the first action to take is to turn off the alternator. An alternator provides electrical power to the aircraft systems and charges the battery while the engine is running. However, if the voltage is low despite the engine running at high RPM, it could indicate a malfunction in the alternator or associated electrical systems. By turning off the alternator, you prevent further potential damage and drain on the electrical system, allowing you to assess the situation and conserve battery power for essential systems. Turning on the altimeter, charging the battery, or checking fuel levels would not directly address the immediate issue of low voltage. In an aircraft, managing electrical power and ensuring the system is functioning correctly is critical for safe operation, making turning off the alternator the appropriate first step in this scenario.

2. What should you check if you see a red X on an airspeed indicator?

- A. Replace the indicator
- B. Reset the circuit breaker**
- C. Perform a system diagnostic
- D. Inspect wiring connections

Seeing a red X on an airspeed indicator is a critical issue that indicates a malfunction or failure in the airspeed measurement system. This red X usually signifies that the instrument is not providing valid airspeed data, possibly due to electrical issues or a failure in the sensor system. Resetting the circuit breaker is an appropriate initial action in this scenario. Circuit breakers serve as protective devices for electrical circuits, and a tripped breaker can interrupt power to the instrument. In many cases, simply resetting the breaker can restore power to the system and resolve the issue with the airspeed indicator. While other options could be relevant in certain contexts—like performing a system diagnostic, inspecting wiring connections, or replacing the indicator—resetting the circuit breaker is a practical first step when faced with an immediate failure indicated by a red X. It addresses a common issue that could restore functionality without needing further more complicated procedures or replacements. When troubleshooting aircraft systems, starting with simple solutions before moving to more complex ones is an effective strategy.

3. When performing an engine run-up, what is the purpose of checking magneto operation?

- A. To increase fuel efficiency**
- B. To ensure proper engine functionality and avoid engine failure**
- C. To assess the atmospheric pressure**
- D. To check the aircraft's battery life**

Checking magneto operation during an engine run-up is crucial for ensuring the proper functionality of the aircraft's engine. The magnetos are responsible for supplying electrical power to the spark plugs, which ignite the fuel-air mixture in the cylinders. If the magnetos are not functioning correctly, it can lead to rough engine operation, misfiring, or even engine failure during flight. By performing a magneto check, the pilot can determine if each magneto is producing the correct spark and that the ignition system is operating as intended. This ensures that the engine performs reliably throughout the flight, significantly reducing the risk of in-flight failures and enhancing overall safety. In contrast, factors like fuel efficiency, atmospheric pressure, and battery life are not directly related to the function of the magnetos during this process. Therefore, they do not serve the primary purpose of a magneto check in the context of engine run-up.

4. Which of the following is NOT part of the aeronautical experience for a pilot not in an integrated program?

- A. 30 Hours Flight Time**
- B. 40 Hours Aeronautical Experience**
- C. 25 Hours Solo Flight Time**
- D. 5 Hours Cross-Country Flight Time**

In the context of aeronautical experience requirements for pilots not in an integrated program, the correct choice identifies an option that does not align with the stipulated experience needed for certification. The aeronautical experience generally includes a diverse range of flight time that is necessary for developing the required skills and knowledge to operate an aircraft safely. It typically encompasses a set number of hours that must include specific types of flying, such as solo and cross-country time. While 30 hours of flight time, 40 hours of aeronautical experience, and 5 hours of cross-country flight time are all relevant to achieving the competencies necessary for a Private Pilot License, the requirement for solo flight time is actually 10 hours, not 25 hours. Thus, 25 hours of solo flight time does not adhere to the outlined regulatory requirements, making it the correct selection for what is NOT part of the standard experience needed. It is important for students to understand that while flight experience is essential, inaccurately applying the required minimums can lead to confusion or misinterpretation of necessary training stages and objectives in their aviation education.

5. What is the recommended squawk code for flights over water outside of 15 nautical miles from land?

- A. 1200**
- B. 4000**
- C. 0100**
- D. 3000**

The recommended squawk code for flights over water outside of 15 nautical miles from land is 4000. This code is specifically designated for use in certain circumstances, particularly in areas where aircraft may not be in contact with air traffic control. When operating over water and beyond a safe distance from land, pilots are encouraged to use this squawk code to help maintain situational awareness and improve the ability for search and rescue operations, should they be necessary. Selecting 4000 helps distinguish these flights from those operating within more controlled environments and enhances the overall safety of aviation operations over less monitored areas. It is important for pilots to understand the appropriate use of squawk codes as part of their navigation and communication responsibilities.

6. What must a person do if they test positive for drug or alcohol use?

- A. Continue working as normal**
- B. Complete the DAMP and pass a retest**
- C. Appeal the test result**
- D. Inform their supervisor immediately**

If a person tests positive for drug or alcohol use, the correct procedure entails completing the DAMP (Drug and Alcohol Management Plan) and subsequently passing a retest. This process is put in place to maintain safety and compliance in aviation and other safety-sensitive environments. The DAMP outlines the protocols for managing the use of such substances in the workplace, including the necessary steps after a positive test result. Completing the DAMP indicates that the individual is engaging with the established policies designed to ensure they are fit to work in their role. Passing a retest is essential as it confirms the individual's return to a safe and compliant state before they can resume their duties. This approach helps to minimize risks associated with substance use in aviation, ultimately safeguarding passengers and crew. Options such as continuing to work as normal or appealing the test result do not align with the critical safety considerations and regulations in place. Informing a supervisor immediately may be necessary at some point in the process, but the primary focus is on following the established procedures indicated in the DAMP.

7. What is the squawk code for day VFR flights in Australia?

- A. 3000
- B. 0100
- C. 1200**
- D. 4000

The squawk code for day VFR (Visual Flight Rules) flights in Australia is 1200. This code is standardized and used widely to indicate that an aircraft is flying under visual flight rules during the day. By squawking 1200, pilots effectively communicate to air traffic services that they are flying in a manner that does not require air traffic control clearance, which is typical for VFR operations. In Australia, 1200 is the primary code for identifying VFR flights with transponders, allowing ATC to monitor traffic while ensuring efficient use of airspace. Squawk codes like 3000, 0100, or 4000 have specific uses, usually designated for other types of operations or regions. For example, some of these other squawk codes might pertain to certain airspace restrictions or specific operations but are not the standard VFR code for day flights. Understanding the significance of these codes is essential for maintaining communication and safety within the Australian aviation system.

8. What is the visibility requirement for issuing Special VFR?

- A. 800m visibility
- B. 1,600m visibility**
- C. 2,000m visibility
- D. No specific visibility requirement

To issue a Special Visual Flight Rules (SVFR) clearance, the visibility requirement is typically established as a minimum of 1,600 meters. This standard ensures that pilots have sufficient visual reference to navigate safely while flying in conditions that may be less than standard VFR minimums, which allows for certain exceptions when operating in controlled airspace. The 1,600 meters visibility requirement is crucial as it provides a safe threshold, allowing pilots to maintain visual contact with the ground and other aircraft while maneuvering. Furthermore, this visibility requirement is often reinforced by regulations that also stipulate the necessity for pilots to remain clear of clouds during an SVFR operation. In comparison, options that propose lesser visibility requirements, such as 800 meters, do not meet the safety standards essential for operating in a controlled airspace environment under SVFR. Likewise, a condition that suggests no specific visibility requirement would undermine the rules designed to protect both the pilot and other aviation operations within the airspace, potentially compromising safety.

9. What altitude must a pilot maintain over congested areas?

- A. 500 feet above the highest obstacle**
- B. 1,000 feet above the highest obstacle**
- C. 1,500 feet above the highest obstacle**
- D. 2,000 feet above the highest obstacle**

The requirement for maintaining a specific altitude over congested areas is grounded in safety regulations designed to minimize risks associated with flight operations in densely populated regions. A pilot must maintain at least 1,000 feet above the highest obstacle within a horizontal radius of 2,000 feet from the aircraft. This altitude helps ensure that, in the event of an engine failure or other in-flight emergency, the aircraft has sufficient altitude to glide and maneuver safely around obstacles, reducing the risk of accidents in urban environments where terrain and structures are prevalent. This regulation is critical in protecting not just the occupants of the aircraft but also the individuals on the ground. It provides a safety margin that accommodates potential emergencies, allowing pilots to manage their descent paths when necessary without being immediately threatened by tall buildings, towers, or other obstructions typical in congested areas.

10. When flying into Essendon, what is the appropriate squawk code?

- A. 4000**
- B. 0100**
- C. 3000**
- D. 1200**

When flying into Essendon, the appropriate squawk code is 3000. This code is specifically used for VFR (Visual Flight Rules) flights in controlled airspace when approaching or departing airports. It helps air traffic control to identify and track VFR traffic more effectively. In the context of flying, squawk codes are essentially transponder settings that aircraft use to communicate their presence to air traffic control. The 3000 code indicates that the aircraft is operating under VFR conditions, which is typical for local traffic that does not require additional services from air traffic control. Using the correct squawk code ensures that the aircraft is visible to radar, thus enhancing safety and situational awareness in the busy air traffic environment around Essendon Airport.