# CAMRT Radiography Practice Exam (Sample)

**Study Guide** 



Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

#### ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.



## **Questions**



- 1. In bone mineral densitometry, what does a T-Score of -1 indicate?
  - A. Normal bone density
  - B. Osteopenia
  - C. Osteoporosis
  - D. Severe osteoporosis
- 2. What is the term for a sac formed by dilation of a blood vessel, commonly an artery?
  - A. Thrombosis
  - **B.** Aneurysm
  - C. Atherosclerosis
  - D. Embolism
- 3. Which of the following is a characteristic of Tungsten that increases x-ray production?
  - A. Low atomic number
  - B. High atomic number
  - C. Low melting point
  - D. High thermal resistance
- 4. AP knee stress projections are primarily used to demonstrate which of the following?
  - A. Patellar dislocation
  - **B.** Osgoode Schlatter Disease
  - C. Medial or collateral ligament damage
  - D. Osteoarthritis
- 5. What is the effect on image quality as the pitch of the CT scan increases?
  - A. Image quality improves
  - B. Image quality remains unchanged
  - C. Image quality decreases
  - D. Image quality depends on the type of tissue scanned

- 6. Which condition is often diagnosed with a prenatal ultrasound?
  - A. Spina bifida
  - **B. Spondylolisthesis**
  - C. Scoliosis
  - D. Ankylosing spondylolysis
- 7. Which vertebral structures unite at the origin of the spinous process of typical vertebrae?
  - A. Both pedicles
  - **B.** Both transverse processes
  - C. Both laminae
  - D. Both zygapophyseal joints
- 8. Where does a Swan-Ganz catheter primarily reside?
  - A. The left side of the heart
  - B. The right side of the heart
  - C. Left ventricle
  - D. Pulmonary veins
- 9. When performing an axio-lateral temporomandibular articulation image, which side is best demonstrated?
  - A. The side closest to the IR
  - B. The side furthest from the IR
  - C. The anterior side
  - D. The posterior side
- 10. Which of the following represents the CT value for fat?
  - A. 1000
  - **B.** -100
  - C. -1000
  - D. -100

### **Answers**



- 1. A 2. B 3. B 4. C 5. C 6. A 7. C 8. B

- 9. A 10. B



## **Explanations**



## 1. In bone mineral densitometry, what does a T-Score of -1 indicate?

- A. Normal bone density
- B. Osteopenia
- C. Osteoporosis
- D. Severe osteoporosis

A T-Score of -1 indicates normal bone density. In bone mineral densitometry, T-Scores are used to compare the bone density of an individual to the average peak bone density of a healthy young adult of the same sex. A score of 0 signifies average young adult bone density, while T-Scores ranging from -1 to +1 are considered normal. A T-Score between -1 and -2.5 typically suggests osteopenia, indicating lower than average bone density, while a score below -2.5 is associated with osteoporosis. Severe osteoporosis would be represented by even lower T-Scores, often below -2.5 with the presence of fragility fractures. Thus, a T-Score of -1 falls within the normal range, making it an important benchmark in assessing bone health.

# 2. What is the term for a sac formed by dilation of a blood vessel, commonly an artery?

- A. Thrombosis
- **B.** Aneurysm
- C. Atherosclerosis
- D. Embolism

The term for a sac formed by the dilation of a blood vessel, typically an artery, is an aneurysm. An aneurysm occurs when the vessel wall weakens and balloons out due to increased pressure or other underlying factors. This dilation can happen in various parts of the body, such as the abdominal aorta or the brain, and poses significant health risks, including rupture and internal bleeding. In contrast, thrombosis refers to the formation of a blood clot within a blood vessel, which can impede blood flow. Atherosclerosis involves the buildup of fatty deposits within artery walls, leading to narrowing and hardening of the arteries rather than dilation. An embolism describes the blockage of a blood vessel by a foreign substance, such as a blood clot, fat globule, or air bubble, which can disrupt circulation but does not involve the dilation characteristic of an aneurysm.



# 3. Which of the following is a characteristic of Tungsten that increases x-ray production?

- A. Low atomic number
- B. High atomic number
- C. Low melting point
- D. High thermal resistance

Tungsten is known for its high atomic number, which is one of the key factors that contribute to increased x-ray production. The high atomic number means that tungsten has a greater number of protons in its nucleus, which leads to a higher probability of interactions between the incoming electrons (during the x-ray generation process) and the tungsten atoms. This results in a more efficient production of x-rays due to enhanced Bremsstrahlung radiation and characteristic radiation. In addition to the atomic number, tungsten's other properties, such as its high melting point and thermal resistance, also support its use in x-ray tubes. These characteristics allow tungsten to withstand the intense heat generated during x-ray production without melting or degrading, which is critical for maintaining consistent and reliable x-ray output. However, the high atomic number is specifically what directly enhances the x-ray production efficiency. On the other hand, options that mention low atomic number or low melting point do not contribute positively to x-ray production. A low atomic number would result in fewer x-ray photons being generated due to reduced interaction capabilities with electrons, and a low melting point could lead to structural failures under the heat generated during x-ray production. Hence, the high atomic number of tungsten is pivotal in maximizing the efficiency of

# 4. AP knee stress projections are primarily used to demonstrate which of the following?

- A. Patellar dislocation
- **B.** Osgoode Schlatter Disease
- C. Medial or collateral ligament damage
- D. Osteoarthritis

AP knee stress projections are primarily utilized to demonstrate medial or collateral ligament damage. This specific technique involves applying stress to the knee joint during the imaging process, which allows for visualization of the stability and integrity of the ligaments. By producing images under stress conditions, radiographers can more clearly identify any abnormalities or tears in the ligaments, particularly the medial collateral ligament, which is tested during abduction stress, and the lateral collateral ligament, which is assessed during adduction stress. While other conditions like patellar dislocation, Osgood-Schlatter Disease, and osteoarthritis may affect the knee, they are not specifically evaluated through stress projections. Patellar dislocation primarily involves issues with the alignment or positioning of the patella rather than the collateral ligaments. Osgood-Schlatter Disease is related to the tibial tuberosity and does not typically require stress projections for diagnosis. Osteoarthritis focuses more on joint space, bone changes, and cartilage degeneration, which are better assessed through standard radiographic techniques rather than stress imaging. Therefore, stress projections are specifically advantageous for identifying ligamentous injuries, making the choice focused on medial or collateral ligament damage the most appropriate.

- 5. What is the effect on image quality as the pitch of the CT scan increases?
  - A. Image quality improves
  - B. Image quality remains unchanged
  - C. Image quality decreases
  - D. Image quality depends on the type of tissue scanned

As the pitch of a CT scan increases, the image quality generally decreases. This is primarily due to the way pitch affects the amount of data collected during the scan. Pitch is defined as the table movement per rotation of the x-ray tube divided by the total width of the x-ray beam. When the pitch increases, it indicates that the table is moving faster relative to the width of the beam. Higher pitch values lead to more gaps between adjacent slices of data, resulting in less overlap and fewer data points for image reconstruction. This can cause a loss of detail and may create artifacts in the images, leading to a reduction in diagnostic accuracy. Consequently, the lower effective resolution and increased chances for motion artifacts contribute to the overall decrease in image quality when the pitch is higher. In certain cases, such as high-speed imaging or specific diagnostic requirements, a higher pitch can be beneficial; however, for general image quality assessment, an increase in pitch is linked to a decline in clarity and detail. This is particularly important in diagnostic imaging where maintaining high image quality is crucial for accurate interpretations.

- 6. Which condition is often diagnosed with a prenatal ultrasound?
  - A. Spina bifida
  - **B. Spondylolisthesis**
  - C. Scoliosis
  - D. Ankylosing spondylolysis

The condition that is often diagnosed with a prenatal ultrasound is spina bifida. This congenital defect occurs when the spinal cord and surrounding structures do not fully close during fetal development. Prenatal ultrasounds are particularly effective in detecting spina bifida because they can visualize the spine and identify any irregularities in its formation. Early diagnosis allows for better planning and management of potential interventions after birth. Spondylolisthesis, scoliosis, and ankylosing spondylolysis are conditions that typically manifest or are diagnosed later in life, often through physical examinations and imaging studies like X-rays or MRI, rather than during the prenatal period. Therefore, while they are important conditions related to the spine, they do not have the same prenatal detection likelihood as spina bifida.

# 7. Which vertebral structures unite at the origin of the spinous process of typical vertebrae?

- A. Both pedicles
- **B. Both transverse processes**
- C. Both laminae
- D. Both zygapophyseal joints

The correct answer is the laminae, which unite at the midline to form the spinous process of typical vertebrae. The spinous process, which projects posteriorly from the vertebra, plays a significant role in providing attachment for muscles and ligaments, as well as aiding in the overall biomechanics of the spine. The laminae are the flat plates of bone that connect the spinous process to the transverse processes and protect the spinal cord. The junction of the two laminae at the spinous process is crucial for the structural integrity of the vertebra, allowing for the attachment of posterior ligaments and muscles that are essential for movement and stability of the spine. The other structures mentioned do not contribute to the formation of the spinous process in the same way. The pedicles connect the vertebral body to the transverse processes, while the transverse processes extend laterally from the vertebral body but do not converge to form the spinous process. The zygapophyseal joints, which are the articulations between the superior and inferior articular processes of adjacent vertebrae, also do not play a direct role in the formation of the spinous process, as they pertain to the intervertebral movement and stability.

### 8. Where does a Swan-Ganz catheter primarily reside?

- A. The left side of the heart
- B. The right side of the heart
- C. Left ventricle
- D. Pulmonary veins

A Swan-Ganz catheter, also known as a pulmonary artery catheter, is primarily used to measure pressures within the heart and the pulmonary circulation. Its placement typically occurs in the right side of the heart, specifically in the right atrium and extending into the right ventricle, and ultimately resides in the pulmonary artery. This positioning allows for the continuous monitoring of pressures in the pulmonary artery, which is crucial for assessing cardiac function and diagnosing conditions such as heart failure or pulmonary hypertension. The primary purpose of the Swan-Ganz catheter is to obtain hemodynamic data that reflects the state of the right side of the heart and pulmonary circulation. Therefore, indicating that the correct residence of a Swan-Ganz catheter is in the right side of the heart is accurate and reflects its function in clinical practice. Other choices, such as the left side of the heart, left ventricle, or pulmonary veins, are not appropriate because the Swan-Ganz catheter does not occupy those locations; it is specifically designed for the right heart and pulmonary artery monitoring.

- 9. When performing an axio-lateral temporomandibular articulation image, which side is best demonstrated?
  - A. The side closest to the IR
  - B. The side furthest from the IR
  - C. The anterior side
  - D. The posterior side

When performing an axio-lateral image of the temporomandibular articulation, the primary focus is on visualizing the joint of interest with clarity and minimal obscuration. By positioning the patient so that the side being examined is closest to the image receptor (IR), the resulting image showcases the anatomy of that side in the best detail. This positioning effectively reduces the distance that the x-ray beam must travel through the tissues, which can improve image resolution and detail. Furthermore, this approach allows for the detection of specific pathologies or anatomical variations in the temporomandibular joint, making the closest side to the IR the most prominently demonstrated in the final radiograph. The other sides or aspects may lead to increased distortion or overlapping of structures, hindering the diagnostic quality of the image.

### 10. Which of the following represents the CT value for fat?

- A. 1000
- **B.** -100
- C. -1000
- D. -100

The CT value for fat is characterized by a specific measurement on the Hounsfield scale, which is used in computed tomography (CT) imaging to quantify the density of different tissues. Fat possesses a lower density compared to water, which is assigned a value of 0 on the Hounsfield scale. Consequently, fat is typically represented by a negative value due to its lower density. The common CT value for fat is approximately -100 Hounsfield units. This negative value indicates that fat is less dense than water, which aligns with the principles of radiographic imaging and the way different tissues interact with X-rays. By using these CT values, radiologists and technologists can interpret images more effectively, differentiating between various types of tissues based on their densities. The provided correct answer fits within this framework, affirming that B, which is -100, appropriately represents the CT value for fat.