CAAP Private Pilot License (PPL) - EQC for Cessna 152 Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. Which of the following is NOT a specified propeller diameter for the Cessna 152?
 - A. 66 inches
 - **B.** 67.5 inches
 - C. 68 inches
 - D. 69 inches
- 2. In case of a cabin fire, what must be done with the vents and cabin heat?
 - A. Open the vents
 - B. Turn off the cabin heat
 - C. Leave them as is
 - D. Activate the cabin air
- 3. What does the red radial line on the airspeed indicator signify?
 - A. Minimum safe velocity
 - B. Maximum structural speed
 - C. Normal operating range
 - D. Stall speed
- 4. Which model is the engine designated for Cessna 152?
 - A. O-235-L2C
 - B. O-320-E2D
 - C. IO-360-B1B
 - D. 0-290-D2
- 5. During an engine failure in flight, what should be the setting for the mixture?
 - A. Rich
 - B. Idle
 - C. Lean
 - D. Full

- 6. Which airspeed range is indicated by the green arc?
 A. 35-90 KIAS
 - **B. 40-111 KIAS**
 - C. 40-100 KIAS
 - D. 60-120 KIAS
- 7. What is the recommended entry speed for performing spins in the Cessna 152?
 - A. Fast deceleration
 - **B. Slow acceleration**
 - C. Use slow deceleration
 - D. Standard approach speed
- 8. What is the maximum allowable oil pressure in psi for the engine of the Cessna 152?
 - A. 120 psi
 - **B.** 110 psi
 - C. 105 psi
 - **D.** 115 psi
- 9. What is the baggage allowance for the Cessna 152?
 - A. 100 lbs
 - **B. 120 lbs**
 - C. 150 lbs
 - D. 200 lbs
- 10. What is the maximum glide speed for emergency procedures in a Cessna 152?
 - **A. 55 KIAS**
 - **B. 60 KIAS**
 - **C. 65 KIAS**
 - **D. 70 KIAS**

Answers

- 1. A 2. B
- 3. B

- 4. A 5. B 6. B 7. C 8. D 9. B 10. B

Explanations

1. Which of the following is NOT a specified propeller diameter for the Cessna 152?

- A. 66 inches
- **B.** 67.5 inches
- C. 68 inches
- D. 69 inches

The specified propeller diameters for the Cessna 152 are critical for maintaining the aircraft's performance and ensuring safe operation. In this context, the diameter of the propeller impacts aspects such as thrust, engine RPM, and overall efficiency. The Cessna 152 typically uses propellers with diameters of 67.5 inches, 68 inches, and 69 inches, all of which are standard specifications for this aircraft model. These sizes are derived from the design requirements that optimize the performance characteristics of the aircraft. In contrast, the 66 inches diameter is not used for the Cessna 152. This option does not align with the manufacturers' specifications for this model, making it the incorrect choice. Understanding these dimensions is essential for pilots to select the appropriate propeller and ensure the aircraft's performance standards are met.

2. In case of a cabin fire, what must be done with the vents and cabin heat?

- A. Open the vents
- B. Turn off the cabin heat
- C. Leave them as is
- D. Activate the cabin air

In the event of a cabin fire, turning off the cabin heat is a crucial step to prevent further fueling of the fire and to reduce the spread of smoke within the cabin. The cabin heat system often utilizes hot air from the engine, which could exacerbate the fire if not appropriately managed. By shutting off the cabin heat, you are effectively isolating the heat source and minimizing the chance of the fire spreading due to the heated air circulating within the cabin. Additionally, opening the vents or activating cabin air may introduce more oxygen, which could intensify the fire rather than extinguishing it. Keeping them as is could also allow any toxic smoke to remain in the cabin, compromising passenger safety. Therefore, turning off the cabin heat is the best action to take in this emergency scenario to protect the occupants and enhance the chances of successfully managing the fire.

3. What does the red radial line on the airspeed indicator signify?

- A. Minimum safe velocity
- **B.** Maximum structural speed
- C. Normal operating range
- D. Stall speed

The red radial line on the airspeed indicator is an important reference for pilots, as it indicates the maximum structural speed, often referred to as Vne (Velocity Never Exceed). Exceeding this speed can lead to structural failure of the aircraft due to aerodynamic forces. It is critical for pilots to remain below this speed during flight operations to ensure the integrity of the aircraft's structure and to avoid potentially catastrophic consequences. Understanding this indicator is crucial for safe flying practices, especially in turbulent conditions or during maneuvers that could increase airspeed. In contrast, the other options represent different measurements or indications on the airspeed indicator that serve other purposes, such as indicating safe operational parameters or stall conditions, but do not capture the essence of the critical red radial line.

4. Which model is the engine designated for Cessna 152?

- A. O-235-L2C
- B. O-320-E2D
- C. IO-360-B1B
- D. O-290-D2

The engine designated for the Cessna 152 is the O-235-L2C. This particular engine model is a four-cylinder, air-cooled, horizontally opposed engine, which is well-suited for the flight characteristics of the Cessna 152. The O-235-L2C produces 110 horsepower, providing the necessary power-to-weight ratio that supports the Cessna 152's performance in training and recreational flying. Its design emphasizes reliability and ease of operation, making it an ideal choice for a training aircraft that schools and new pilots frequently use. When considering the other options, the O-320-E2D is a more powerful engine often found in larger aircraft; the IO-360-B1B is a fuel-injected engine also used in more advanced models; while the O-290-D2 was primarily used in earlier aircraft, none of these match the specific requirements and performance characteristics needed for the Cessna 152.

5. During an engine failure in flight, what should be the setting for the mixture?

- A. Rich
- **B.** Idle
- C. Lean
- D. Full

In the event of an engine failure during flight, the correct setting for the mixture is to position it to idle or cutoff. This is crucial because it helps to prevent any potential flooding of the engine, especially if you are attempting to restart it. Reducing the fuel flow aids in conserving fuel and ensures that any remaining fuel is utilized efficiently. Typically, the mixture is set to rich during normal operations to promote optimal engine performance. However, in scenarios where the engine is not operating, adjusting the mixture to an idle or cutoff position is important. This action is part of the emergency procedures outlined in the aircraft's operating handbook and can play a key role in managing the situation effectively.

6. Which airspeed range is indicated by the green arc?

- A. 35-90 KIAS
- **B. 40-111 KIAS**
- C. 40-100 KIAS
- D. 60-120 KIAS

The indicated airspeed range represented by the green arc on an airspeed indicator signifies the normal operating range for the aircraft. This range indicates the speeds at which the aircraft can fly safely and efficiently without risking structural damage or stalling under normal operations. In general, the green arc is designed to show the speeds that are safe for taking off, cruising, and landing, allowing pilots to maintain proper control and performance. For the Cessna 152, the range typically falls between 40 KIAS and 111 KIAS, making this option the correct choice. This range is crucial during various phases of flight, including takeoff and landing, where specific airspeeds must be observed for safe maneuvering. The values below and above this spectrum represent different flight conditions; speeds below the green arc can lead to stall conditions, while speeds above it may increase the risk of structural failure or loss of control. Recognizing this range is essential for new pilots to ensure safety and adherence to operating procedures during flight.

7. What is the recommended entry speed for performing spins in the Cessna 152?

- A. Fast deceleration
- **B. Slow acceleration**
- C. Use slow deceleration
- D. Standard approach speed

The recommended entry speed for performing spins in the Cessna 152 is a result of ensuring the aircraft enters the spin safely and predictably. Using slow deceleration allows the pilot to control the aircraft's energy state effectively. This speed ensures that the aircraft is not going too fast, which could lead to an aggressive or uncontrollable spin entry, and also prevents stall-related issues that could arise from entering spins at higher speeds. Maintaining a slower speed during the entry helps to keep the aircraft within its stall margin, allowing for a more controlled initiation of the spin. This is particularly important in the Cessna 152, as it is designed for training and should be operated with a focus on safety and stability during maneuvers such as spins. In contrast, options that suggest fast deceleration or fast speeds could lead to an increased risk of uncontrolled maneuvers, while keeping a standard approach speed does not specifically address the unique requirements of spin entry, which necessitate a more gradual and controlled speed profile.

8. What is the maximum allowable oil pressure in psi for the engine of the Cessna 152?

- A. 120 psi
- **B.** 110 psi
- C. 105 psi
- D. 115 psi

The maximum allowable oil pressure for the engine of the Cessna 152 is 115 psi. Maintaining proper oil pressure is crucial for engine operation, as it ensures that the engine components are adequately lubricated to prevent wear and overheating. Oil pressure is monitored through the aircraft's engine gauges, and exceeding the maximum specified pressure could indicate a malfunction or blockage in the oil system, which can lead to engine damage. In the context of engine performance, the Cessna 152 is designed with specific tolerances for oil pressure, and adhering to these specifications is critical for safety and operational efficiency. Understanding the maximum allowable parameters helps pilots ensure that the aircraft is functioning correctly and to address any anomalies during pre-flight checks and routine inspections.

9. What is the baggage allowance for the Cessna 152?

- A. 100 lbs
- **B. 120 lbs**
- C. 150 lbs
- D. 200 lbs

The baggage allowance for the Cessna 152 is 120 pounds. This limitation is crucial for pilots to understand, as exceeding the maximum baggage weight can affect the aircraft's performance and safety. The allowance is typically divided between the two storage compartments - one located behind the seats and the other in the aft bulkhead. When preparing for a flight, pilots must consider not only the weight of the baggage but also how it is distributed within the aircraft to maintain proper center of gravity and balance. This ensures the aerodynamics and controllability of the aircraft are not compromised during flight.

10. What is the maximum glide speed for emergency procedures in a Cessna 152?

- **A. 55 KIAS**
- **B. 60 KIAS**
- **C. 65 KIAS**
- **D. 70 KIAS**

The maximum glide speed for emergency procedures in a Cessna 152 is 60 KIAS (Knots Indicated Airspeed). This speed is significant because it optimizes the aircraft's glide performance, allowing for the best lift-to-drag ratio. Flying at this speed helps maintain controlled flight over longer distances during a glide, which is crucial in an emergency landing scenario. By adhering to this speed, pilots ensure that they are not stalling or descending too rapidly, maintaining effective control while looking for a suitable landing area. Understanding and applying this speed is essential for effective emergency procedures in the Cessna 152.