

BPS Sterile Compounding Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. How can the risk of contamination at critical sites increase?**
 - A. By reducing exposure time**
 - B. By increasing the area's exposure duration**
 - C. By using smaller containers**
 - D. By sterilizing all equipment**
- 2. What should be done with compounded sterile preparations that have exceeded their beyond-use date?**
 - A. They can be used for training purposes**
 - B. They should be disposed of according to regulations and facility policy**
 - C. They can be stored for further testing**
 - D. They are still safe to use for patients**
- 3. Which method of sterility testing is favored to extend beyond-use dates (BUD)?**
 - A. Direct inoculation**
 - B. Terminal Filtration by Membrane Filtration**
 - C. Visual inspection**
 - D. Microbial culture testing**
- 4. Which of the following is a requirement for the immediate use provision?**
 - A. No more than two entries into one container**
 - B. Compounding process must exceed one hour**
 - C. Use of hazardous drugs is allowed**
 - D. Compounding can be done in a non-sterile environment**
- 5. Carts in a buffer room should be constructed from which of the following materials?**
 - A. Wood and aluminum**
 - B. Vinyl and cardboard**
 - C. Smooth impervious materials such as stainless steel**
 - D. Glass and rubber**

6. How should hazardous drugs be disposed of in a pharmacy?

- A. They should be disposed of in regular waste containers**
- B. They should be returned to the supplier**
- C. They should be disposed of in designated hazardous drug waste containers**
- D. They should be flushed down the toilet**

7. Which type of risk level is associated with sterilization by filtration?

- A. Low Risk**
- B. Medium Risk**
- C. High Risk**
- D. Very High Risk**

8. Which type of flooring is recommended for a buffer room in sterile compounding?

- A. Carpet with adhesive backing**
- B. Tile flooring with grout**
- C. Wide sheet vinyl flooring with heat welded seams**
- D. Concrete with a wax finish**

9. What is the osmolality threshold for a drug administered via a central line?

- A. Less than 500 mOsm/L**
- B. Less than 800 mOsm/L**
- C. Greater than or equal to 900 mOsm/L**
- D. Exactly 1000 mOsm/L**

10. What is the main purpose of USP 797?

- A. To ensure sanitation in surgical settings**
- B. To prevent harm and death to patients treated with compounded sterile preparations**
- C. To regulate the sale of prescription drugs**
- D. To establish pricing guidelines for compounded medications**

Answers

SAMPLE

1. B
2. B
3. B
4. A
5. C
6. C
7. C
8. C
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. How can the risk of contamination at critical sites increase?

- A. By reducing exposure time
- B. By increasing the area's exposure duration**
- C. By using smaller containers
- D. By sterilizing all equipment

The risk of contamination at critical sites increases when the area is exposed for a longer duration. Critical sites, such as injection ports or open ampules, are particularly vulnerable to airborne contaminants, microorganisms, and particulates in the environment. The longer these areas remain exposed during the compounding process, the more likely they are to come into contact with these potential contaminants. This principle is critical in sterile compounding, where maintaining aseptic conditions is essential for patient safety. Reducing exposure time is a key strategy to minimize contamination risk, and this is implemented through efficient work practices and procedures. Increased exposure time negates these efforts, allowing more opportunities for contaminants to settle on critical surfaces, potentially leading to serious patient complications if sterile products are compromised. In contrast, using smaller containers and sterilizing all equipment are measures that can contribute to a sterile environment, but they do not directly relate to the duration of exposure and its impact on contamination risk.

2. What should be done with compounded sterile preparations that have exceeded their beyond-use date?

- A. They can be used for training purposes
- B. They should be disposed of according to regulations and facility policy**
- C. They can be stored for further testing
- D. They are still safe to use for patients

Compounded sterile preparations that have exceeded their beyond-use date must be disposed of according to regulations and facility policy. The beyond-use date is determined based on stability data and intended to ensure that preparations maintain their quality and effectiveness. Using compounded sterile preparations beyond this date poses a risk to patient safety, as the potency, sterility, and overall quality cannot be guaranteed. Disposing of these preparations in accordance with established regulations ensures compliance with safety standards and protects both patients and healthcare workers from any potential harm. Adhering to proper disposal methods, which may include specific waste disposal protocols, helps in maintaining a safe and controlled environment for patient care. Other options, such as using expired preparations for training purposes, storing them for further testing, or assuming they are still safe for use, contradict the principles of aseptic technique and drug safety, as they compromise the reliability of compounded preparations. Ensuring the integrity and safety of sterile compounded preparations is a fundamental aspect of pharmacy practice.

3. Which method of sterility testing is favored to extend beyond-use dates (BUD)?

- A. Direct inoculation**
- B. Terminal Filtration by Membrane Filtration**
- C. Visual inspection**
- D. Microbial culture testing**

The method favored to extend beyond-use dates (BUD) is Terminal Filtration by Membrane Filtration. This technique is utilized because it effectively removes microorganisms from the final product, ensuring that the compounded sterile preparation remains free from contamination. By filtering the solution through a membrane with a specific pore size, typically 0.2 micrometers, any viable bacteria or fungi are retained, thereby enhancing the overall sterility of the product. Using this method allows for a higher level of assurance regarding the sterility of the compounded preparation, which is crucial when determining appropriate BUDs. Extended BUDs require confirmed sterility, and terminal filtration provides that assurance by minimizing the risk of microbial contamination effectively. Other methods, while useful for various purposes, do not provide the same level of assurance for extending BUDs. For instance, direct inoculation and microbial culture testing may not capture all possible contaminants effectively if performed post-compounding, while visual inspection alone only identifies visible particulates and defects without addressing microbial contamination. Each method has its purpose, but terminal filtration is specifically designed for maintaining sterility over an extended period.

4. Which of the following is a requirement for the immediate use provision?

- A. No more than two entries into one container**
- B. Compounding process must exceed one hour**
- C. Use of hazardous drugs is allowed**
- D. Compounding can be done in a non-sterile environment**

The immediate use provision is designed to allow for the preparation of sterile compounds in situations where the need for rapid administration is critical, such as in emergencies. One of the key requirements of this provision is that there should be no more than two entries into one container. This restriction helps minimize the risk of contamination, ensuring the compounded preparation remains sterile while facilitating its use in urgent situations. The other options present requirements or scenarios that are not aligned with the immediate use provision. For instance, allowing a compounding process to exceed one hour is counter to the intention of immediate use, which focuses on prompt delivery and use. Furthermore, hazardous drugs typically require stricter handling and compounding standards due to their significant risks, which is not consistent with immediate use scenarios. Lastly, compounding in a non-sterile environment would not maintain the necessary sterility for immediate use, which must occur under appropriate conditions to prevent contamination. Therefore, the correct answer emphasizes the critical limit on container entries to uphold safety and sterility in urgent compounding situations.

5. Carts in a buffer room should be constructed from which of the following materials?

- A. Wood and aluminum**
- B. Vinyl and cardboard**
- C. Smooth impervious materials such as stainless steel**
- D. Glass and rubber**

Carts in a buffer room should be constructed from smooth impervious materials such as stainless steel because these materials are non-porous, easy to clean, and resistant to microbial contamination. In a sterile compounding environment, maintaining cleanliness and preventing contamination are paramount, particularly since these spaces are critical for preparing sterile products. Stainless steel does not harbor bacteria and can withstand regular disinfection processes necessary in a sterile compounding area. Its durability and resistance to corrosion also ensure that the carts will maintain their integrity over time, reducing the risk of contamination from degraded materials. In contrast, materials like wood can absorb liquids and provide a surface for bacterial growth, while aluminum may not withstand repeated cleaning with certain disinfectants and could corrode. Options such as vinyl and cardboard are not suitable as they can easily be damaged, do not provide a smooth surface for cleaning, and can harbor microbes. Glass and rubber also present challenges; glass can break and rubber can degrade, both leading to potential contamination issues. Thus, the choice of stainless steel meets the high standards necessary for sterile compounding practices.

6. How should hazardous drugs be disposed of in a pharmacy?

- A. They should be disposed of in regular waste containers**
- B. They should be returned to the supplier**
- C. They should be disposed of in designated hazardous drug waste containers**
- D. They should be flushed down the toilet**

Hazardous drugs require special handling and disposal procedures to ensure the safety of pharmacy staff, patients, and the environment. The correct method for disposing of hazardous drugs is to use designated hazardous drug waste containers. These containers are specifically designed to safely hold and contain substances that can pose risks due to their toxicity, potential for harming human health, or environmental hazards. Using proper hazardous drug waste containers helps prevent contamination and exposure. It ensures that the drugs are handled in compliance with regulations from agencies such as the Environmental Protection Agency (EPA) and the Occupational Safety and Health Administration (OSHA), which set guidelines for managing hazardous materials. This practice minimizes the risk of spills, leaks, and accidental exposure, thereby protecting pharmacy personnel and the community. In contrast, disposing of hazardous drugs in regular waste containers or flushing them down the toilet can pose significant environmental hazards, as it might lead to contamination of water supplies and ecosystems. While returning drugs to the supplier may be appropriate under certain circumstances, it does not encompass the full spectrum of safe disposal practices required for hazardous materials in a pharmacy setting.

7. Which type of risk level is associated with sterilization by filtration?

- A. Low Risk**
- B. Medium Risk**
- C. High Risk**
- D. Very High Risk**

Sterilization by filtration is typically associated with high-risk level compounding. This is because the filtration process is used primarily for preparing sterile products from non-sterile components or when eliminating particulate matter from solutions. High-risk level compounding involves more complex manipulations, such as the transfer of sterile materials to sterile containers, and handling of non-sterile products that will later be sterilized. In a sterile compounding environment, products that are prepared using filtration often require additional precautions to ensure that all potential contaminants are eliminated. This includes ensuring the integrity of the filter, which must be validated to effectively remove microbial contaminants. Therefore, the process of sterilization by filtration involves a higher degree of risk compared to other processes that may be used for lower risk level compounding, making it appropriate to categorize it under high risk. Other classifications, such as low, medium, or very high risk, are associated with different levels of complexity and potential for contamination, but none align with the unique challenges posed by filtration sterilization as directly as the high-risk designation does.

8. Which type of flooring is recommended for a buffer room in sterile compounding?

- A. Carpet with adhesive backing**
- B. Tile flooring with grout**
- C. Wide sheet vinyl flooring with heat welded seams**
- D. Concrete with a wax finish**

The recommended type of flooring for a buffer room in sterile compounding is wide sheet vinyl flooring with heat welded seams. This choice is optimal because vinyl flooring is non-porous, which helps prevent microbial growth and contamination, essential in maintaining the sterile environment required for compounding. The heat-welded seams create a continuous, seamless surface that further minimizes the risk of contamination from joints or joints where dirt and microbes could accumulate. Additionally, vinyl is easy to clean and maintain, which is fundamental in a sterile compounding area where strict cleanliness standards must be adhered to. In contrast, other flooring options do not provide the same level of hygiene and safety. Carpet with adhesive backing can trap dust, debris, and microorganisms, making it unsuitable for sterile environments. Tile flooring with grout can also pose a risk due to the porous nature of grout, where contaminants can become lodged and difficult to fully clean. Lastly, concrete with a wax finish might not be completely smooth or non-porous, which also makes it less ideal for infection control in a sterile compounding setting.

9. What is the osmolality threshold for a drug administered via a central line?

- A. Less than 500 mOsm/L**
- B. Less than 800 mOsm/L**
- C. Greater than or equal to 900 mOsm/L**
- D. Exactly 1000 mOsm/L**

The correct choice relates to the safe administration of hypertonic solutions through central venous access. Central lines are designed to handle higher osmolality solutions compared to peripheral lines because they can accommodate the dilution of these solutions into the larger volume of blood flowing through the central circulation. Administering solutions with an osmolality greater than or equal to 900 mOsm/L through a central line minimizes the risk of irritation and damage to the endothelium of smaller veins, which is particularly important in preventing phlebitis and complications from extravasation. This threshold is set to ensure patient safety and maintain vascular integrity. Using a solution with an osmolality lower than this threshold is typically acceptable for peripheral administration, but central lines provide a more robust route for solutions that exceed this level. Therefore, the choice of an osmolality threshold greater than or equal to 900 mOsm/L for central line administration aligns with established guidelines in sterile compounding practices to protect patient safety while delivering necessary therapies.

10. What is the main purpose of USP 797?

- A. To ensure sanitation in surgical settings**
- B. To prevent harm and death to patients treated with compounded sterile preparations**
- C. To regulate the sale of prescription drugs**
- D. To establish pricing guidelines for compounded medications**

The main purpose of USP 797 is to prevent harm and death to patients treated with compounded sterile preparations. This set of guidelines specifically addresses the practices surrounding the compounding of sterile medications to ensure their safety, quality, and efficacy. USP 797 outlines standards for the preparation, handling, and storage of sterile compounded products, emphasizing the need for aseptic technique and appropriate environmental controls to minimize risks of contamination during the compounding process. The guidelines focus on protecting patient health by reducing the incidence of infections, medication errors, and adverse reactions associated with impurities or improper handling of sterile preparations. This makes it crucial for healthcare professionals involved in compounding to adhere to these standards to maintain patient safety.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://bpssterilecompounding.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE