

BioMedical Admissions Test (BMAT) Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What are the products of the reaction between an acid and a metal carbonate?**
 - A. Salt and Water**
 - B. Salt, Water, and Ammonia**
 - C. Salt, Water, and Carbon Dioxide**
 - D. Sugar and Carbon Dioxide**

- 2. What is the role of bile in the digestive process?**
 - A. Emulsifies proteins**
 - B. Neutralizes stomach acid and emulsifies fats**
 - C. Converts carbohydrates into simple sugars**
 - D. Produces enzymes for digestion**

- 3. How many types of chemical structures are mentioned?**
 - A. Two**
 - B. Three**
 - C. Four**
 - D. Five**

- 4. What does the prefix $\times 10^{-3}$ represent?**
 - A. kilo**
 - B. milli**
 - C. mega**
 - D. giga**

- 5. What mechanism is required for selective reabsorption to occur in the kidneys?**
 - A. Diffusion**
 - B. Passive transport**
 - C. Active transport**
 - D. Facilitated diffusion**

6. What color is the precipitate produced when dilute nitric acid is added to I⁻ ions?

- A. Brown**
- B. Cream**
- C. Colorless**
- D. Yellow**

7. What is the primary function of an ammeter in electrical circuits?

- A. Measure voltage across two points**
- B. Measure the current flowing through a circuit**
- C. Calculate resistance in a circuit**
- D. Detect the presence of electric fields**

8. What is the main purpose of the nephron in the kidney?

- A. To filter blood**
- B. To produce urine**
- C. To regulate blood sugar**
- D. To absorb nutrients**

9. Which equation describes the relationship outlined in Hooke's Law?

- A. F, Force (N) = m, mass (kg) × a, acceleration (m/s²)**
- B. F, Force applied (N) = k, spring constant (N/m) × e, extension (m)**
- C. W, Work (J) = F, force (N) × d, distance (m)**
- D. Ep, change in gravitational potential energy (J) = m, mass (kg) × g, gravitational field strength (N/kg) × h, change in height (m)**

10. Amylase is secreted in which of the following organs?

- A. Heart, Lungs, Kidney**
- B. Salivary Gland, Liver, Stomach**
- C. Salivary Gland, Pancreas, Small Intestine**
- D. Brain, Skin, Bone**

Answers

SAMPLE

1. C
2. B
3. C
4. B
5. C
6. D
7. B
8. A
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. What are the products of the reaction between an acid and a metal carbonate?

- A. Salt and Water**
- B. Salt, Water, and Ammonia**
- C. Salt, Water, and Carbon Dioxide**
- D. Sugar and Carbon Dioxide**

When an acid reacts with a metal carbonate, it is a typical neutralization reaction that produces specific products. The main products of this reaction include a salt, water, and carbon dioxide. The acid donates protons (H^+ ions), while the metal carbonate reacts with these protons to release carbon dioxide (CO_2) gas and form a soluble salt. The general reaction follows the formula: Acid + Metal Carbonate \rightarrow Salt + Water + Carbon Dioxide. Here's how each component forms in the reaction: 1. ****Salt****: This is formed from the cation of the metal from the metal carbonate and the anion from the acid. For example, if hydrochloric acid (HCl) reacts with sodium carbonate (Na_2CO_3), sodium chloride (NaCl) will be produced as the salt. 2. ****Water****: Water is produced when the protons from the acid combine with the hydroxide ions (OH^-) that are often released in the decomposition of the carbonate. 3. ****Carbon Dioxide****: The reaction also causes the release of carbon dioxide gas when the carbonate reacts with the acid, which can be observed as fizzing or bubbling. The other options provided do not

2. What is the role of bile in the digestive process?

- A. Emulsifies proteins**
- B. Neutralizes stomach acid and emulsifies fats**
- C. Converts carbohydrates into simple sugars**
- D. Produces enzymes for digestion**

The role of bile in the digestive process is primarily to facilitate the digestion and absorption of fats. Bile, produced by the liver and stored in the gallbladder, contains bile salts that emulsify fats. Emulsification breaks down large fat globules into smaller droplets, increasing the surface area for the action of digestive enzymes, such as lipases. This process enhances the efficiency of fat digestion and absorption in the intestines. In addition to emulsifying fats, bile also plays a critical role in neutralizing stomach acid. When the acidic contents from the stomach enter the small intestine, bile helps to raise the pH, providing a more suitable environment for the action of digestive enzymes. This dual function of emulsifying fats and neutralizing stomach acid makes bile essential for the proper digestion of dietary fats and maintaining the optimal conditions for enzymatic activity in the intestine. The other options do not accurately reflect the role of bile. For instance, bile does not emulsify proteins or convert carbohydrates into simple sugars, nor does it produce enzymes. Instead, it assists in the emulsification of fats and neutralization of gastric acid.

3. How many types of chemical structures are mentioned?

- A. Two
- B. Three
- C. Four**
- D. Five

The correct answer indicates that there are four types of chemical structures mentioned. The reasoning for this is based on the understanding of how chemical compounds can be represented. Typically, chemical structures can include: 1. **Molecular Structures** - which show the arrangement of atoms within a molecule. 2. **Structural Formulas** - which depict the connectivity between atoms, highlighting functional groups and bonding. 3. **Skeletal Structures** - which provide a simplified representation of organic molecules, often omitting hydrogen atoms for clarity. 4. **Resonance Structures** - used in cases where a single representation is insufficient to describe the actual electronic structure of a molecule due to delocalization of electrons. These categories encompass a variety of representations in chemistry. Each type serves to communicate different aspects of molecular geometry, connectivity, and electronic structure, which are fundamental for understanding chemical behavior. The other options suggest fewer types of structures, which may overlook significant representations used in chemical analysis and molecular modeling.

4. What does the prefix $\times 10^{-3}$ represent?

- A. kilo
- B. milli**
- C. mega
- D. giga

The prefix $\times 10^{-3}$ represents "milli," which is a standard metric prefix used in the International System of Units (SI). In this context, "milli" signifies a factor of one-thousandth ($1/1000$) of a unit. Therefore, when a quantity is expressed with the prefix "milli," it means that the value has been divided by 1000. For example, 1 millimeter (mm) is equal to 0.001 meters, and 1 milligram (mg) is equal to 0.001 grams. In contrast, "kilo" refers to a factor of one thousand (10^3), "mega" signifies one million (10^6), and "giga" represents one billion (10^9). Hence, "kilo," "mega," and "giga" represent much larger quantities than "milli," which fundamentally highlights why the prefix $\times 10^{-3}$ corresponds specifically to "milli." Understanding these metric prefixes is crucial in various scientific and medical contexts, where precise measurements are imperative.

5. What mechanism is required for selective reabsorption to occur in the kidneys?

- A. Diffusion**
- B. Passive transport**
- C. Active transport**
- D. Facilitated diffusion**

Selective reabsorption in the kidneys primarily relies on active transport mechanisms. This process is essential for the kidneys to reclaim valuable substances from the filtrate back into the bloodstream. Active transport involves the movement of ions and molecules against their concentration gradient, which requires energy, usually in the form of ATP. In the context of renal function, substances such as glucose, amino acids, and various ions (like sodium and potassium) are actively reabsorbed in different segments of the nephron. For example, in the proximal convoluted tubule, glucose and sodium ions are actively transported back into the blood, allowing the body to maintain homeostasis and conserve resources. Other mechanisms like diffusion and facilitated diffusion do play roles in kidney function, but they do not account for the specificity and energy requirements of selective reabsorption. Diffusion relies on concentration gradients, while facilitated diffusion uses carrier proteins to help move substances but still does not require energy. Therefore, the requirement of energy and specificity in the reabsorption of key substances underscores why active transport is the correct mechanism involved in selective reabsorption in the kidneys.

6. What color is the precipitate produced when dilute nitric acid is added to I⁻ ions?

- A. Brown**
- B. Cream**
- C. Colorless**
- D. Yellow**

When dilute nitric acid is added to I⁻ ions, the reaction leads to the formation of iodine. Iodine, in its solid form, creates a yellow precipitate known as iodine crystals. Therefore, the correct answer relating to the color of the precipitate produced is yellow. In contrast, the other colors mentioned do not correspond to the precipitate formation of iodine. A brown color typically relates to other compounds or reactions, such as the formation of iron(III) ions, cream often refers to lead(II) iodide, which is not the case here, and colorless would suggest the absence of a noticeable precipitate, which is not accurate for iodine. Hence, the specific reaction between dilute nitric acid and I⁻ ions that leads to a yellow precipitate is significant.

7. What is the primary function of an ammeter in electrical circuits?

- A. Measure voltage across two points**
- B. Measure the current flowing through a circuit**
- C. Calculate resistance in a circuit**
- D. Detect the presence of electric fields**

The primary function of an ammeter in electrical circuits is to measure the current flowing through a circuit. Ammeters are specifically designed to be placed in series with the component whose current you want to measure. When connected this way, they allow all the current to pass through them, providing an accurate reading of the current flow in amperes (A). In contrast, other options focus on different electrical measurements. For example, measuring voltage across two points is a function of a voltmeter, which is connected in parallel to the circuit component. Calculating resistance involves using ohmmeters or applying Ohm's Law ($V=IR$), requiring the measurement of voltage and current, rather than direct measurement of resistance. Detecting the presence of electric fields is more relevant to devices like field meters or electrostatic voltmeters, not ammeters, which operate based on current flow.

8. What is the main purpose of the nephron in the kidney?

- A. To filter blood**
- B. To produce urine**
- C. To regulate blood sugar**
- D. To absorb nutrients**

The main purpose of the nephron in the kidney is to filter blood. Each nephron is a functional unit that plays a critical role in the process of urine formation. It begins with the glomerulus, where blood is filtered through a semi-permeable membrane, allowing waste products and excess substances to pass into the renal tubule while retaining blood cells and large proteins in circulation. While producing urine is also a key function of the nephron, it is secondary to the filtration process. Urine production involves several stages, including filtration, reabsorption, and secretion. Therefore, the initial and fundamental action of the nephron is to filter the blood to create the filtrate that will eventually form urine. The regulation of blood sugar is not a function of the nephron; this is primarily managed by the liver and pancreas. Similarly, nutrient absorption doesn't occur in the nephron; that process mainly happens in the gastrointestinal tract. Thus, the primary role of the nephron in the kidney is accurately reflected in its ability to filter blood, setting the foundation for subsequent processes involved in urine formation.

9. Which equation describes the relationship outlined in Hooke's Law?

- A. F , Force (N) = m , mass (kg) \times a , acceleration (m/s²)**
- B. F , Force applied (N) = k , spring constant (N/m) \times e , extension (m)**
- C. W , Work (J) = F , force (N) \times d , distance (m)**
- D. E_p , change in gravitational potential energy (J) = m , mass (kg) \times g , gravitational field strength (N/kg) \times h , change in height (m)**

Hooke's Law articulates the principle that the force exerted by a spring is directly proportional to the amount it is extended or compressed from its natural length, provided that the material's elastic limit is not exceeded. This relationship can be mathematically represented as an equation, where the force applied to the spring is equal to the spring constant multiplied by the extension. The equation format provided aligns with Hooke's Law, with "F" denoting the force applied to the spring, "k" representing the spring constant (which quantifies the stiffness of the spring), and "e" signifying the extension of the spring from its rest position. If a spring is stretched or compressed, the force exerted by the spring will be proportional to this extension, illustrating the linear relationship defined in Hooke's Law. This understanding is essential in physics and engineering, as it underpins the behavior of elastic materials, allowing for calculations related to springs, materials under tension, and various mechanical systems. The other equations listed correspond to different foundational principles in physics, including Newton's second law of motion, the work-energy principle, and gravitational potential energy, but they do not describe the key relationship defined by Hooke's Law.

10. Amylase is secreted in which of the following organs?

- A. Heart, Lungs, Kidney**
- B. Salivary Gland, Liver, Stomach**
- C. Salivary Gland, Pancreas, Small Intestine**
- D. Brain, Skin, Bone**

Amylase is an enzyme that plays a crucial role in the digestion of carbohydrates, specifically in breaking down starches into sugars. The primary organs involved in the secretion of amylase are the salivary glands and the pancreas. In the salivary glands, amylase is secreted into the mouth, where it begins the process of carbohydrate digestion as food is chewed and mixed with saliva. This initial step is important for helping to fragment starches into simpler sugars, which the body can more readily absorb. The pancreas also secretes amylase, but this occurs in the small intestine. Here, pancreatic amylase continues the process started in the mouth, further digesting carbohydrates as part of the pancreatic juice that is released into the small intestine during digestion. While the liver and stomach do not produce amylase, option C correctly identifies the salivary glands and pancreas as the two key organs for amylase secretion, highlighting its critical role in digestive processes beginning in the mouth and continuing in the small intestine. The presence of the small intestine in this answer also reflects the site of action for pancreatic amylase, reinforcing its biological relevance in the digestive system.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://bmat.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE