

Biological Systems MCAT Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which type of hormone is insulin classified as?**
 - A. Steroid hormone**
 - B. Peptide hormone**
 - C. Amino acid derivative**
 - D. Fatty acid hormone**

- 2. What role does angiotensin II play in the regulation of blood pressure?**
 - A. It acts as a vasodilator.**
 - B. It inhibits aldosterone release.**
 - C. It stimulates the release of aldosterone.**
 - D. It decreases heart rate.**

- 3. What distinguishes hyperopia from myopia in terms of vision correction?**
 - A. Hyperopia requires concave lenses, myopia needs convex lenses.**
 - B. Hyperopia is corrected with prism lenses, myopia with bifocals.**
 - C. Hyperopia requires convex lenses, myopia needs concave lenses.**
 - D. Hyperopia is associated with blurred vision, myopia with clear vision.**

- 4. How do steroid hormones generally act on target cells?**
 - A. By binding to cell surface receptors**
 - B. By altering ion channel activity**
 - C. By binding to intracellular receptors and altering transcription**
 - D. By activating second messenger systems**

- 5. Which cells are primarily involved in adaptive immunity?**
 - A. Natural Killer cells and Neutrophils**
 - B. B cells and T cells**
 - C. Monocytes and Macrophages**
 - D. Bone marrow and Lymph nodes**

6. Which hormone is primarily responsible for increasing sodium reabsorption in the kidneys?

- A. Aldosterone**
- B. Angiotensin I**
- C. Cortisol**
- D. Antidiuretic hormone (ADH)**

7. The occipital lobe is primarily responsible for which of the following functions?

- A. Emotion regulation**
- B. Processing visual information**
- C. Motor control**
- D. Touch and taste integration**

8. What are connections between afferent and efferent neurons primarily mediated by?

- A. Afferent neurons**
- B. Efferent neurons**
- C. Interneurons**
- D. Microglia**

9. What is the potential outcome of dedifferentiation in normal and pathological processes?

- A. Increased differentiation of cells**
- B. Formation of cancerous cells**
- C. Activation of dormant genes**
- D. Stimulation of immune responses**

10. What primary effect do estrogen and progesterone have on the endometrium?

- A. Inducing apoptosis**
- B. Thickening of the endometrial lining**
- C. Reduction of blood flow**
- D. Activation of mitochondria**

Answers

SAMPLE

1. B
2. C
3. C
4. C
5. B
6. A
7. B
8. C
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. Which type of hormone is insulin classified as?

- A. Steroid hormone
- B. Peptide hormone**
- C. Amino acid derivative
- D. Fatty acid hormone

Insulin is classified as a peptide hormone because it is composed of chains of amino acids. Peptide hormones are typically synthesized as larger precursor proteins and then cleaved to form the active hormone. In the case of insulin, it is produced in the pancreas from a larger protein called proinsulin, which is then converted into the active form through enzymatic cleavage. Peptide hormones are generally water-soluble, which allows them to travel freely in the bloodstream and bind to specific receptors on the surface of target cells, initiating various cellular responses. Insulin, in particular, plays a crucial role in glucose metabolism by facilitating the uptake of glucose into cells, especially muscle and fat cells, thereby lowering blood sugar levels. In contrast, steroid hormones are derived from cholesterol and can easily pass through cell membranes, binding to intracellular receptors. Amino acid derivatives are modified forms of single amino acids and typically function in various signaling pathways, while fatty acid hormones are derived from fatty acids and usually play roles in longer-term signaling related to metabolism and inflammation. Each hormone class has unique structural characteristics and physiological roles, which help in understanding their functions in the body.

2. What role does angiotensin II play in the regulation of blood pressure?

- A. It acts as a vasodilator.
- B. It inhibits aldosterone release.
- C. It stimulates the release of aldosterone.**
- D. It decreases heart rate.

Angiotensin II plays a crucial role in the regulation of blood pressure primarily by stimulating the release of aldosterone. Aldosterone is a hormone produced by the adrenal glands that promotes sodium retention and potassium excretion in the kidneys. When sodium is reabsorbed, water follows osmotically, leading to an increase in blood volume. This increase in blood volume contributes to a rise in blood pressure. In addition to its effect on aldosterone, angiotensin II also causes vasoconstriction, which means it narrows blood vessels. This vasoconstrictive effect further raises blood pressure by increasing total peripheral resistance. Moreover, angiotensin II can signal the pituitary gland to release antidiuretic hormone (ADH), which also contributes to water retention, aiding in blood pressure regulation. This understanding of angiotensin II as a key player in both stimulating aldosterone release and causing vasoconstriction highlights its importance in maintaining blood pressure homeostasis, especially in response to low blood pressure situations.

3. What distinguishes hyperopia from myopia in terms of vision correction?

- A. Hyperopia requires concave lenses, myopia needs convex lenses.
- B. Hyperopia is corrected with prism lenses, myopia with bifocals.
- C. Hyperopia requires convex lenses, myopia needs concave lenses.**
- D. Hyperopia is associated with blurred vision, myopia with clear vision.

Hyperopia, or farsightedness, is a condition where distant objects may be seen more clearly than nearby objects. This occurs because the light entering the eye is focused behind the retina, often due to the eyeball being too short or the cornea having too little curvature. To correct hyperopia, convex lenses are used. These lenses are thicker in the center than at the edges, helping to converge light rays before they enter the eye, allowing them to focus properly on the retina. In contrast, myopia, or nearsightedness, is when nearby objects are seen clearly while distant objects appear blurry. This results from the light being focused in front of the retina, typically because the eyeball is too long or the cornea is too curved. To correct myopia, concave lenses are used, which are thinner in the center and thicker at the edges. These lenses help to diverge light rays, extending the focal point back onto the retina. Thus, the distinction in vision correction lies in the types of lenses used: convex lenses for hyperopia and concave lenses for myopia.

4. How do steroid hormones generally act on target cells?

- A. By binding to cell surface receptors
- B. By altering ion channel activity
- C. By binding to intracellular receptors and altering transcription**
- D. By activating second messenger systems

Steroid hormones primarily act on target cells by binding to intracellular receptors, which then alter gene transcription. This mechanism begins when a steroid hormone, a lipid-soluble molecule, diffuses through the cell membrane of the target cell due to its nonpolar nature. Once inside the cell, the hormone binds to a specific receptor located in the cytoplasm or nucleus. This hormone-receptor complex then translocates to the nucleus, where it can bind to specific DNA sequences and initiate or repress the transcription of target genes, ultimately leading to changes in protein synthesis. This direct interaction with DNA allows steroid hormones to exert long-term effects on cellular function and behavior, such as growth, metabolism, and reproductive processes. The influence of steroid hormones on gene expression is a fundamental aspect of their role in regulating various physiological processes throughout the body.

5. Which cells are primarily involved in adaptive immunity?

- A. Natural Killer cells and Neutrophils
- B. B cells and T cells**
- C. Monocytes and Macrophages
- D. Bone marrow and Lymph nodes

B cells and T cells are the main players in adaptive immunity, which is a specific and targeted immune response developed over time after exposure to pathogens. B cells are responsible for producing antibodies that neutralize pathogens and mark them for destruction. They can differentiate into plasma cells that secrete large volumes of antibodies, while also forming memory cells that provide long-lasting immunity. T cells, on the other hand, are crucial for cell-mediated immunity. They can directly kill infected cells (cytotoxic T cells) or help coordinate the immune response (helper T cells). The interaction between these two types of cells ensures a well-orchestrated response to specific antigens that the immune system encounters, leading to a highly efficient and robust defense against infections. In contrast, Natural Killer cells and Neutrophils are part of the innate immune response, which reacts quickly to pathogens but does not provide the specific targeting and memory characteristic of adaptive immunity. Monocytes and macrophages also function primarily in the innate immune response and play a role in phagocytosis and antigen presentation, but they are not the central components of adaptive immunity. Bone marrow and lymph nodes are organs involved in the development and activation of immune cells, but they are not themselves cells.

6. Which hormone is primarily responsible for increasing sodium reabsorption in the kidneys?

- A. Aldosterone**
- B. Angiotensin I
- C. Cortisol
- D. Antidiuretic hormone (ADH)

Aldosterone is a steroid hormone produced by the adrenal cortex and plays a crucial role in regulating sodium reabsorption in the kidneys. It stimulates the nephron's distal convoluted tubule and collecting duct to reabsorb sodium ions from the filtrate back into the bloodstream. In doing so, it helps to maintain blood pressure and fluid balance within the body. The action of aldosterone is linked to its role in the renin-angiotensin-aldosterone system (RAAS), where it is released in response to low blood pressure or low sodium levels. By increasing sodium reabsorption, aldosterone also indirectly increases water reabsorption, leading to an increase in blood volume and pressure. In contrast, while angiotensin I is part of the precursor to angiotensin II, which eventually stimulates aldosterone release, it does not have a direct effect on sodium reabsorption itself. Cortisol, while it can influence some aspects of kidney function, primarily affects glucose metabolism and has different systemic roles. Antidiuretic hormone (ADH) focuses on water reabsorption rather than sodium, acting mainly on the collecting ducts of the kidneys to promote water retention. Thus, aldosterone stands out as the hormone specifically responsible for increasing

7. The occipital lobe is primarily responsible for which of the following functions?

- A. Emotion regulation**
- B. Processing visual information**
- C. Motor control**
- D. Touch and taste integration**

The occipital lobe is primarily responsible for processing visual information, making it a crucial area for our ability to interpret and understand what we see. Located at the back of the brain, this lobe contains the primary visual cortex, where visual signals received from the eyes are interpreted. This processing includes recognizing shapes, colors, movement, and depth, which together contribute to our overall visual perception. The extensive network of connections to other regions of the brain helps integrate visual data with sensory input and cognitive functions, facilitating complex visual tasks such as recognizing faces or reading text. The other choices refer to functions managed by different brain regions: emotional regulation is predominantly a function of the limbic system, motor control is primarily associated with the frontal lobe and cerebellum, and touch and taste integration are largely processed by the parietal lobe and insular cortex. Understanding the distinct functions of these brain areas helps clarify why the occipital lobe's role in visual processing is essential to our sensory experience.

8. What are connections between afferent and efferent neurons primarily mediated by?

- A. Afferent neurons**
- B. Efferent neurons**
- C. Interneurons**
- D. Microglia**

The connections between afferent and efferent neurons are primarily mediated by interneurons. Interneurons function as connectors or relay neurons within the central nervous system (CNS). They play a crucial role in processing information by relaying signals between sensory neurons (afferent neurons) that carry information from sensory receptors to the CNS, and motor neurons (efferent neurons) that convey commands from the CNS to effectors like muscles or glands. Interneurons are essential for integrating sensory input and directing appropriate motor responses, often facilitating complex reflex arcs and pathways involved in higher-order functions such as learning and decision-making. They form networks that enable communication within the CNS, thus allowing for the processing of information that guides both voluntary and involuntary actions. The other options, while involving different types of neurons or support cells, do not serve the primary role of directly connecting afferent and efferent pathways to mediate these neuronal communications as effectively as interneurons do.

9. What is the potential outcome of dedifferentiation in normal and pathological processes?

- A. Increased differentiation of cells**
- B. Formation of cancerous cells**
- C. Activation of dormant genes**
- D. Stimulation of immune responses**

Dedifferentiation refers to a biological process in which specialized cells lose their distinct characteristics and return to a more primitive or stem cell-like state. This process can occur in both normal physiological contexts, such as during tissue regeneration, and in pathological situations, particularly in the development of cancer. When dedifferentiation takes place in pathological processes, it can lead to the formation of cancerous cells. Cancer cells often exhibit characteristics of dedifferentiated cells, such as uncontrolled growth, loss of specific functions, and the potential for greater motility. This transformation is a hallmark of many types of cancers, where normal cellular pathways are disrupted, leading to malignancy. The ability of cancer cells to dedifferentiate may contribute to their aggressive behavior, resilience to therapies, and ability to metastasize. In contrast, while the other options depict aspects related to cellular behavior, they do not capture the critical and direct association between dedifferentiation and the formation of cancerous cells. Therefore, recognizing dedifferentiation as a potential pathway leading to the malignancy helps in understanding tumorigenesis and the underlying mechanisms that could be targeted for treatment.

10. What primary effect do estrogen and progesterone have on the endometrium?

- A. Inducing apoptosis**
- B. Thickening of the endometrial lining**
- C. Reduction of blood flow**
- D. Activation of mitochondria**

Estrogen and progesterone play crucial roles in the menstrual cycle, particularly concerning the endometrium, which is the inner lining of the uterus. The primary effect of these hormones, especially during the luteal phase of the menstrual cycle, is to prepare the endometrium for potential implantation of a fertilized egg. Estrogen stimulates the growth of the endometrial lining, promoting cellular proliferation and thickening the endometrium in preparation for possible pregnancy. This thickening is essential because it creates a nutrient-rich environment conducive to the implantation of an embryo. Following ovulation, progesterone is secreted by the corpus luteum and further enhances the development of the endometrial lining that was initiated by estrogen. It also promotes the secretion of various substances that support potential implantation and early embryonic development. The combination of these actions results in a well-prepared endometrium, making option B the correct choice. Understanding the roles of both estrogen and progesterone is critical for grasping how they regulate the menstrual cycle and support reproductive processes.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://biologicalsystemsmcat.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE