Biennial Flight Review (BFR) Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. Which type of report provides updates on rapidly changing weather conditions?
 - A. TAF
 - **B. SPECI**
 - C. METAR
 - D. PIREP
- 2. What does "ADM" stand for in aviation terminology?
 - A. Aeronautical Design Model
 - **B.** Aeronautical Decision Making
 - C. Aerial Departure Maneuver
 - D. Aviation Data Management
- 3. When scanning for other aircraft, at what degree increments should a pilot check from left to right?
 - A. 5 degrees
 - B. 10 degrees
 - C. 15 degrees
 - D. 20 degrees
- 4. How should a pilot manage scuba diving before flying?
 - A. Wait 6 hours if below 8,000 ft
 - B. Wait 12 hours if below 8,000 ft without control stop
 - C. Wait 24 hours regardless of altitude
 - D. There is no wait requirement after diving
- 5. What does a TAF provide information about?
 - A. Weather conditions for general aviation
 - B. Weather conditions at a specific airport
 - C. General climate predictions
 - D. Daily temperature forecasts

- 6. What happens if a crew member refuses to take an alcohol test?
 - A. The member is suspended for 6 months
 - B. The member is suspended for 1 year
 - C. The member is dismissed immediately
 - D. No action is taken
- 7. What happens to lift when an airplane is in a turn?
 - A. Lift decreases
 - B. Lift remains unchanged
 - C. Lift increases
 - D. Lift fluctuates sporadically
- 8. Which scenario describes a situation where the lower aircraft has the right of way?
 - A. Both aircraft are at the same altitude
 - B. The lower aircraft is overtaking a faster aircraft
 - C. The lower aircraft is landing
 - D. The upper aircraft is maneuvering
- 9. What does Vo represent in terms of aircraft speed?
 - A. Visible operating speed
 - **B. Operating Maneuvering Speed**
 - C. Vortex operation speed
 - D. Velocity of operation
- 10. What is one important skill assessed during a BFR?
 - A. Mastery of aerobatic maneuvers
 - B. Understanding of flight navigation systems
 - C. Ability to perform emergency landings
 - D. Knowledge of different aircraft systems

Answers

- 1. B 2. B

- 2. B 3. B 4. B 5. B 6. B 7. A 8. C 9. B 10. B

Explanations

1. Which type of report provides updates on rapidly changing weather conditions?

- A. TAF
- **B. SPECI**
- C. METAR
- D. PIREP

The correct answer is B, as the SPECI report is specifically designed to provide updates on rapidly changing weather conditions. SPECI stands for "special weather report," and it is issued when significant changes occur in the weather that could impact aviation, such as sudden changes in visibility, wind conditions, or significant weather events like thunderstorms developing or dissipating. This is critical for pilots who require up-to-date information to make safe decisions while flying. Regular reports like METAR, while important for general weather conditions, do not offer the immediate updates that a SPECI provides. TAF, on the other hand, offers forecasted weather over a period but doesn't give real-time updates on sudden changes. PIREPs, which are pilot reports, can relay real-time weather conditions based on a pilot's experience, but they do not serve to systematically update the conditions like a SPECI report does. Hence, the SPECI report is unique in its role for rapidly changing weather conditions, making it the correct choice.

2. What does "ADM" stand for in aviation terminology?

- A. Aeronautical Design Model
- **B.** Aeronautical Decision Making
- C. Aerial Departure Maneuver
- D. Aviation Data Management

In aviation terminology, "ADM" stands for Aeronautical Decision Making. This concept is crucial for pilots as it encompasses the systematic approach to making informed and effective decisions during flight operations. It involves evaluating the situation, assessing the risks, generating and analyzing alternatives, and making choices that enhance safety and efficiency in flight. Aeronautical Decision Making emphasizes the importance of understanding both the technical and human factors involved in decision-making processes. By developing these skills, pilots can improve their ability to manage unexpected situations and reduce the likelihood of errors that can lead to accidents. The other options provided do not accurately reflect the principles associated with pilot decision-making processes in aviation. They may refer to related topics but do not capture the essence of what ADM represents in the context of maintaining flight safety and operational competency.

- 3. When scanning for other aircraft, at what degree increments should a pilot check from left to right?
 - A. 5 degrees
 - B. 10 degrees
 - C. 15 degrees
 - D. 20 degrees

When scanning for other aircraft, checking at 10-degree increments allows for a balanced approach to awareness without overwhelming the pilot with information. This degree of granularity strikes a practical balance; it facilitates comprehensive visual scanning, enabling pilots to detect potential threats or nearby aircraft while also maintaining a manageable workload. A 10-degree scan is deemed sufficient for visual separation, ensuring pilots can adequately cover their peripheral and direct lines of sight without significant gaps. Other options tend to favor either too wide or too narrow a focus. Scanning at smaller increments, such as 5 degrees, may lead to unnecessary workload, while larger increments like 15 or 20 degrees could miss vital nearby traffic. Therefore, using 10-degree increments effectively enhances situational awareness while ensuring efficient scanning during flight.

- 4. How should a pilot manage scuba diving before flying?
 - A. Wait 6 hours if below 8,000 ft
 - B. Wait 12 hours if below 8,000 ft without control stop
 - C. Wait 24 hours regardless of altitude
 - D. There is no wait requirement after diving

The correct management following scuba diving before flying is to wait 12 hours if diving occurs below 8,000 feet and without a control stop. This recommendation is important to minimize the risk of decompression sickness during flight. When a diver ascends to the surface, nitrogen is released from the body, and this nitrogen can form bubbles if a person ascends too quickly or flies too soon after diving. Allowing a 12-hour interval is based on guidelines set by various aviation and diving organizations, which account for the time required for nitrogen to safely exit the body in order to reduce the chances of decompression sickness. In this context, waiting 6 hours would not account for possible dive profiles that require longer surface intervals after more complex or deeper dives. Additionally, a blanket waiting period of 24 hours is more conservative than necessary for typical recreational dives that are well-managed. Lastly, stating that there is no wait requirement after diving overlooks the risks associated with flying too soon after scuba activities. Thus, adhering to the 12-hour waiting period strikes a balance between safety and practicality for divers planning to fly.

5. What does a TAF provide information about?

- A. Weather conditions for general aviation
- B. Weather conditions at a specific airport
- C. General climate predictions
- D. Daily temperature forecasts

A Terminal Aerodrome Forecast (TAF) provides detailed weather information specifically for a particular airport, focusing on conditions that are expected to occur within a 5 statute mile radius of that airport. The forecast typically covers a 24 to 30-hour period and includes critical data on expected wind speed and direction, visibility, significant weather phenomena, and any ceiling information related to clouds. This ensures that pilots and flight operations teams have access to precise, timely forecasting that directly impacts safety during takeoff, landing, and flight activities near airports. While general aviation weather information may include broader forecasts and climate data, the TAF's unique emphasis on localized airport conditions is what distinguishes it from other types of weather reports. The other options either pertain to non-specific weather conditions over broader areas or deal with general climate trends, which are not the focus of a TAF.

6. What happens if a crew member refuses to take an alcohol test?

- A. The member is suspended for 6 months
- B. The member is suspended for 1 year
- C. The member is dismissed immediately
- D. No action is taken

When a crew member refuses to take an alcohol test, the protocol followed is in accordance with regulatory standards aimed at ensuring safety in aviation. In this context, the correct answer indicates that a member is suspended for 1 year. This consequence serves as a significant deterrent against non-compliance and reinforces the importance of upholding safety regulations within the industry. Refusal to take a mandated alcohol test suggests a serious breach of the protocols established by aviation authorities, which could ultimately jeopardize the safety of the crew, passengers, and the aircraft. The 1-year suspension reflects the severity of such actions in promoting accountability and the vital need for adherence to safety measures in aviation operations. This policy aims to maintain a high standard of safety by ensuring that crew members remain fit for duty and that there is a clear understanding of the consequences of not complying with testing requirements.

7. What happens to lift when an airplane is in a turn?

- A. Lift decreases
- B. Lift remains unchanged
- C. Lift increases
- D. Lift fluctuates sporadically

When an airplane is in a turn, the distribution of lift changes due to the horizontal component of lift being used to create centripetal force to turn the aircraft. As the airplane banks into the turn, the total lift vector is tilted; while the vertical component of lift remains directed upward to counteract weight, the horizontal component must act to change the flight path. In a coordinated turn, the total lift may initially remain the same if the speed and angle of bank are constant. However, if we consider real-world scenarios, pilots often need to increase power or lower the angle of attack during a turn to maintain altitude which can initially lead to a decrease in effective lift. Therefore, it's important to recognize that while the lift may appear initially to remain unchanged, the perceived decrease in vertical lift relative to the weight of the aircraft due to the change in flight path and bank angle leads to this conclusion of effective lift being reduced. The understanding of lift in a turn is essential for pilots to maintain altitude and avoid potential stalls, which can happen if the angle of attack is not managed properly during the maneuver.

8. Which scenario describes a situation where the lower aircraft has the right of way?

- A. Both aircraft are at the same altitude
- B. The lower aircraft is overtaking a faster aircraft
- C. The lower aircraft is landing
- D. The upper aircraft is maneuvering

The scenario where the lower aircraft has the right of way occurs when the lower aircraft is landing. According to aviation regulations, when two aircraft are approaching for a landing, the aircraft at the lower altitude has the right of way over the higher altitude aircraft. This rule is designed to ensure safety and orderly landing procedures, as the aircraft that is descending to land must have priority to avoid potential collision during its approach to the runway. In comparison to the other circumstances, when both aircraft are at the same altitude, they must adhere to the "right-hand rule," which may not necessarily give the lower aircraft the right of way. In the case of overtaking, the overtaking aircraft, regardless of altitude, is required to pass the aircraft being overtaken unless otherwise specified. Additionally, if the upper aircraft is maneuvering, it does not inherently grant the lower aircraft the right of way unless it is landing. Therefore, the best scenario that illustrates the lower aircraft having the right of way is when it is landing.

9. What does Vo represent in terms of aircraft speed?

- A. Visible operating speed
- **B. Operating Maneuvering Speed**
- C. Vortex operation speed
- D. Velocity of operation

Operating Maneuvering Speed is a critical concept in aviation, particularly when discussing aircraft performance and operational safety. Vo represents the speed at which the aircraft can safely perform maneuvers without risking structural damage. It is defined as the maximum speed at which the aircraft can be safely controlled in turbulent air, offering a buffer against stall speeds during various maneuvers. Understanding Vo is essential for pilots because flying below this speed allows for maximum control authority and minimizes the risk of exceeding load limits in turbulent conditions. At speeds greater than Vo, the aircraft may experience fully-stalled conditions, where adverse aerodynamic effects can occur, especially during turns or abrupt maneuvers. Thus, it is crucial for pilots to know their aircraft's Vo during planning and flying to maintain safety margins. Other options like visible operating speed, vortex operation speed, and velocity of operation do not accurately define the critical safety parameter associated with maneuvering and control in turbulent situations, making Operating Maneuvering Speed the correct choice in this context. Knowing the concept behind Vo allows pilots to make informed operational decisions, which is why this knowledge is emphasized during a Biennial Flight Review.

10. What is one important skill assessed during a BFR?

- A. Mastery of aerobatic maneuvers
- B. Understanding of flight navigation systems
- C. Ability to perform emergency landings
- D. Knowledge of different aircraft systems

The assessment of understanding flight navigation systems during a Biennial Flight Review (BFR) is crucial because it reflects a pilot's ability to efficiently navigate and manage their flight environment. Strong knowledge in this area ensures that pilots can accurately interpret navigation aids, engage with various navigation technologies, and understand relevant regulatory airspace requirements. This skill is particularly important to enhance safety and operational proficiency, as accurate navigation contributes to avoiding controlled airspace violations and maintaining situational awareness during flight. Pilots are expected to demonstrate their ability to utilize these systems effectively, thereby ensuring a safer flying experience for themselves and passengers. While knowledge of aircraft systems, performing emergency landings, and mastery of aerobatic maneuvers are important aspects of piloting, they are not the primary focus of a BFR. The BFR is designed to confirm that pilots are up to date with essential operational skills, including navigation, which is vital for overall flight safety.