

# BDA Radiography for Dental Nurses Practice Test (Sample)

## Study Guide



**Everything you need from our exam experts!**

**Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.**

**ALL RIGHTS RESERVED.**

**No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.**

**Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.**

**SAMPLE**

# Table of Contents

|                                    |           |
|------------------------------------|-----------|
| <b>Copyright</b> .....             | <b>1</b>  |
| <b>Table of Contents</b> .....     | <b>2</b>  |
| <b>Introduction</b> .....          | <b>3</b>  |
| <b>How to Use This Guide</b> ..... | <b>4</b>  |
| <b>Questions</b> .....             | <b>5</b>  |
| <b>Answers</b> .....               | <b>8</b>  |
| <b>Explanations</b> .....          | <b>10</b> |
| <b>Next Steps</b> .....            | <b>16</b> |

SAMPLE

# Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

# How to Use This Guide

**This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:**

## 1. Start with a Diagnostic Review

**Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.**

## 2. Study in Short, Focused Sessions

**Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.**

## 3. Learn from the Explanations

**After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.**

## 4. Track Your Progress

**Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.**

## 5. Simulate the Real Exam

**Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.**

## 6. Repeat and Review

**Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.**

**There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!**

## **Questions**

SAMPLE

- 1. How many hours of CPD should an IRMER operator complete within each 5-year cycle?**
  - A. 10 hours of verifiable CPD**
  - B. 3 hours of verifiable CPD**
  - C. 5 hours of verifiable CPD**
  - D. 6 hours of non-verifiable CPD**
- 2. Which x-ray variable affects the degree of blackening of the radiographic image?**
  - A. mAs**
  - B. kV**
  - C. Distance**
  - D. Frequency**
- 3. What happens to the 99% of electrons' energy not converted into x-rays?**
  - A. It is dispersed into the air**
  - B. It is absorbed by the patient**
  - C. It is conducted away by the copper block and oil**
  - D. It is converted into heat and light**
- 4. What does the acronym ALARA stand for in radiation safety?**
  - A. As Low As Reasonably Achievable**
  - B. As Low As Required by Authorities**
  - C. As Low As Radiation Advisory**
  - D. All Levels As Radiation Acceptable**
- 5. What is an acceptable target percentage of 'N' quality ratings for digital films?**
  - A. 10%**
  - B. 2%**
  - C. 5%**
  - D. 15%**

**6. What term describes the effect of radiation on living tissue?**

- A. Biological effect**
- B. Radiant energy**
- C. Thermal effect**
- D. Phenotypic change**

**7. What is the radiation absorbed dose and its unit?**

- A. The measure of ionizing radiation exposure, unit is Sv**
- B. The amount of radiation absorbed by tissue, unit is Gy**
- C. The total exposure to radiation, unit is R**
- D. The equivalent radiation dose, unit is mSv**

**8. What type of image receptor requires the least amount of radiation to create a radiographic image?**

- A. Film receptor**
- B. Digital receptor**
- C. Phosphor plate**
- D. Conventional receptor**

**9. What is NOT a duty of employees in relation to radiation safety?**

- A. You must wear a lead apron**
- B. You must carry out a prior radiation risk assessment**
- C. You must ensure equipment is properly maintained**
- D. You must report any radiation incidents immediately**

**10. What is the best way of ensuring a bitewing radiograph is correctly aligned?**

- A. Using a hand-held X-ray machine**
- B. Using an image receptor holder and beam aiming device**
- C. Positioning the patient in an upright chair**
- D. Taking multiple exposures**

## **Answers**

SAMPLE

1. C
2. A
3. C
4. A
5. C
6. A
7. B
8. B
9. B
10. B

SAMPLE

## **Explanations**

SAMPLE

**1. How many hours of CPD should an IRMER operator complete within each 5-year cycle?**

- A. 10 hours of verifiable CPD**
- B. 3 hours of verifiable CPD**
- C. 5 hours of verifiable CPD**
- D. 6 hours of non-verifiable CPD**

The correct answer signifies that an IRMER operator is required to complete 5 hours of verifiable Continuing Professional Development (CPD) within each 5-year cycle. This is important in ensuring that dental professionals remain informed about the latest practices, technologies, and regulations in radiography. Continuing education is essential for maintaining competence and ensuring high standards of patient care. Verifiable CPD indicates that the learning activities can be documented and that the operator has engaged in professional development that contributes directly to their practice in a measurable way. Meeting the CPD requirements reinforces the operator's knowledge and skills, which in turn enhances the safety and effectiveness of their radiographic practices.

**2. Which x-ray variable affects the degree of blackening of the radiographic image?**

- A. mAs**
- B. kV**
- C. Distance**
- D. Frequency**

The degree of blackening of a radiographic image, also referred to as radiographic density, is influenced by the quantity of x-rays that reach the film or sensor. The variable that plays a crucial role in this process is the milliampere-seconds (mAs), which is a product of the x-ray tube current (in milliamperes) and the exposure time (in seconds). Increasing the mAs results in a greater number of x-ray photons being produced, which in turn enhances the density of the image and increases the degree of blackening on the developed film. Higher mAs values contribute to more exposure, leading to darker images, while lower mAs values create lighter images due to reduced x-ray production. This relationship is essential for dental radiography in achieving diagnostic images that adequately reveal the details of the teeth and surrounding structures. Although kilovoltage (kV) also affects image contrast and can influence the overall appearance of the radiograph, it does not directly correlate with the degree of blackening in the same way that mAs does. Distance affects the intensity of the x-ray beam, adhering to the inverse square law, and frequency pertains more to the type of radiation rather than its effect on density. Therefore, m

**3. What happens to the 99% of electrons' energy not converted into x-rays?**

- A. It is dispersed into the air**
- B. It is absorbed by the patient**
- C. It is conducted away by the copper block and oil**
- D. It is converted into heat and light**

The correct answer, which states that 99% of the electrons' energy not converted into x-rays is conducted away by the copper block and oil, highlights how dental x-ray machines are designed to efficiently manage the energy produced during the x-ray generation process. During the production of x-rays, a significant amount of energy is indeed released but is not transformed into useful x-rays. Instead, this excess energy primarily manifests as heat. The components of the x-ray tube, such as the copper block, are engineered to conduct this heat away from the target area to prevent damage and ensure safe operation. Additionally, oil surrounding the x-ray tube acts as a coolant to absorb and dissipate this heat effectively, maintaining optimal temperatures for the machine's longevity and efficiency. Understanding this principle is crucial for dental nurses, as it underlines the importance of the design of dental radiography equipment in managing the byproducts of x-ray generation, thereby ensuring both safety and functionality during dental imaging procedures.

**4. What does the acronym ALARA stand for in radiation safety?**

- A. As Low As Reasonably Achievable**
- B. As Low As Required by Authorities**
- C. As Low As Radiation Advisory**
- D. All Levels As Radiation Acceptable**

The acronym ALARA stands for "As Low As Reasonably Achievable." This principle is fundamental in the field of radiation safety, particularly in medical imaging and dental radiography. It emphasizes the importance of minimizing radiation exposure to patients, operators, and anyone else who may be in the vicinity of the x-ray equipment to the lowest level that is reasonably achievable while still obtaining the necessary diagnostic images. This encompasses the implementation of various safety measures and practices, such as proper shielding, limiting the duration of exposure, and employing the appropriate settings for the equipment. The rationale behind this principle is rooted in the understanding that while radiation can be an effective tool for diagnosing and treating dental and medical conditions, unnecessary exposure can lead to harmful effects. Therefore, adhering to the ALARA principle not only promotes safety but also ensures that the benefits of radiographic procedures outweigh any potential risks.

**5. What is an acceptable target percentage of 'N' quality ratings for digital films?**

- A. 10%**
- B. 2%**
- C. 5%**
- D. 15%**

The target percentage of 'N' quality ratings for digital films is ideally set at 5%. This benchmark is established to ensure high standards in radiographic quality. Maintaining a low percentage of 'N' ratings indicates that the majority of films produced fall within acceptable quality parameters, reflecting effective techniques, proper equipment functioning, and adherence to protocols. Setting the threshold at 5% allows for a balance between maintaining quality and allowing for minor errors that could occur during imaging processes. If the percentage were higher, it would signal potential systemic issues that need addressing—such as inadequate training, equipment malfunction, or procedural inconsistencies. This target percentage facilitates ongoing quality control and prompts regular assessment of radiographic practices, ensuring the best outcomes for patient care and diagnostic accuracy.

**6. What term describes the effect of radiation on living tissue?**

- A. Biological effect**
- B. Radiant energy**
- C. Thermal effect**
- D. Phenotypic change**

The term that describes the effect of radiation on living tissue is "biological effect." This term encompasses the various ways that ionizing radiation can influence biological systems, including potential damage to cellular structures, DNA modification, and impacts on cell growth and function. When radiation interacts with living tissues, it can lead to a range of biological outcomes, from harmless cellular changes to more severe consequences like mutations, carcinogenesis, or tissue necrosis, depending on the type and dose of radiation exposure. Understanding biological effects is fundamental in radiography and dental practices, as it helps professionals assess risks associated with radiation use and implement safety measures to protect both patients and staff. This includes careful consideration of exposure levels and the utilization of protective techniques to minimize any potential harm while obtaining diagnostic images. Other terms listed do not specifically address the impact radiation has on biological organisms in the same way, making "biological effect" the appropriate and accurate choice.

## 7. What is the radiation absorbed dose and its unit?

- A. The measure of ionizing radiation exposure, unit is Sv
- B. The amount of radiation absorbed by tissue, unit is Gy**
- C. The total exposure to radiation, unit is R
- D. The equivalent radiation dose, unit is mSv

The radiation absorbed dose specifically refers to the amount of energy from ionizing radiation that is absorbed by a given mass of tissue. The unit of measurement for this absorbed dose is the gray (Gy). One gray is defined as the absorption of one joule of radiation energy per kilogram of material (in this case, tissue). This measurement is crucial in radiography as it helps to assess the potential for harm that radiation may cause to biological tissues. The absorbed dose provides a direct indication of the energy deposited in the tissue, which is essential for understanding the possible biological effects of different levels of radiation exposure. The other units mentioned in the choices relate to different aspects of radiation measurement. For instance, sieverts (Sv) measure biological effects of radiation, not the absorbed dose itself. Roentgens (R) measures exposure in air, rather than absorbed dose in tissue, and the millisievert (mSv) serves to express equivalent doses that account for the type of radiation and its biological impact. However, these definitions do not pertain specifically to the amount of radiation absorbed by tissue, making the gray (Gy) the appropriate unit for this concept.

## 8. What type of image receptor requires the least amount of radiation to create a radiographic image?

- A. Film receptor
- B. Digital receptor**
- C. Phosphor plate
- D. Conventional receptor

Digital receptors require the least amount of radiation to create a radiographic image primarily because they have a higher sensitivity to radiation compared to traditional film receptors. Digital imaging technology utilizes solid-state detectors that convert x-rays into electronic signals. This enhanced sensitivity allows for less radiation exposure while still achieving a diagnostic-quality image. Moreover, digital imaging systems often employ advanced image processing techniques that can enhance the contrast and clarity of the images, allowing practitioners to obtain valuable diagnostic information without the need for higher doses of radiation. This characteristic not only supports patient safety by minimizing radiation exposure but also improves the overall efficiency of the imaging process in dental practices. In contrast, the other types of image receptors, such as film and conventional receptors, tend to require greater exposure to achieve adequate image quality, leading to higher doses of radiation than that used with digital systems. Phosphor plates also necessitate a higher level of radiation compared to digital detectors, as they require the initial exposure to create a latent image that must later be processed.

## 9. What is NOT a duty of employees in relation to radiation safety?

- A. You must wear a lead apron
- B. You must carry out a prior radiation risk assessment**
- C. You must ensure equipment is properly maintained
- D. You must report any radiation incidents immediately

The duty that is not typically assigned to employees regarding radiation safety is carrying out a prior radiation risk assessment. This task is generally the responsibility of a radiation protection officer or a qualified individual within the organization who has the training and expertise to assess risk levels associated with radiation exposure effectively. On the other hand, wearing a lead apron is a crucial personal protective measure to minimize radiation exposure to employees during radiographic procedures, ensuring their safety while working in environments where radiation is present. Ensuring equipment is properly maintained is also an essential duty to prevent malfunctions that could lead to unnecessary radiation exposure. Additionally, the immediate reporting of radiation incidents is vital for maintaining safety protocols and allowing for prompt investigation and remediation of any potential health risks. Therefore, while employees have critical roles in upholding radiation safety practices, conducting risk assessments falls outside their typical responsibilities.

## 10. What is the best way of ensuring a bitewing radiograph is correctly aligned?

- A. Using a hand-held X-ray machine
- B. Using an image receptor holder and beam aiming device**
- C. Positioning the patient in an upright chair
- D. Taking multiple exposures

The best method for ensuring a bitewing radiograph is correctly aligned involves the use of an image receptor holder and a beam aiming device. These tools are specifically designed to maintain the appropriate distance and angle between the X-ray tube and the image receptor, which is crucial for capturing clear and diagnostic-quality images. The image receptor holder stabilizes the film or digital receptor in the mouth, ensuring it is held firmly in place and positioned accurately parallel to the teeth being examined. The beam aiming device helps direct the X-ray beam to the correct angle, reducing the chance of distortion or scatter that can occur if the beam is misaligned. This combination of tools promotes consistency and accuracy in capturing bitewing images. Other methods, while they may assist somewhat, do not provide the same level of reliability and precision. For example, using a hand-held X-ray machine may introduce variability in alignment since it requires manual positioning that can be less stable. Positioning the patient in an upright chair is necessary for comfort and access, but it does not guarantee accurate alignment on its own. Taking multiple exposures can help achieve a diagnostic image, but it does not address the importance of proper alignment from the outset and can increase radiation exposure for the patient. Thus, the use of an image receptor

# Next Steps

**Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.**

**As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.**

**If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at [hello@examzify.com](mailto:hello@examzify.com).**

**Or visit your dedicated course page for more study tools and resources:**

**<https://bdaradfordentalnurses.examzify.com>**

**We wish you the very best on your exam journey. You've got this!**

**SAMPLE**