

AWS D1.1 Structural Welding Code - Steel (Open Book) Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. Why is inspection critical in the welding process?**
 - A. To reduce the cost of welding**
 - B. To ensure aesthetic appeal**
 - C. To identify defects before finalization**
 - D. It is not very important**
- 2. Which of the following welding processes is NOT included in the prequalified welding processes by AWS D1.1 code?**
 - A. SMAW**
 - B. SAW**
 - C. GTAW**
 - D. FCAW**
- 3. Why is pre-heating required in some welding processes according to the AWS D1.1 code?**
 - A. To reduce the cost of welding**
 - B. To prevent cracking in certain materials**
 - C. To speed up the welding process**
 - D. To improve the appearance of the weld**
- 4. What is the minimum preheat and inter-pass temperature when welding ASTM A572 grade 50 steel plate using E9018 electrodes?**
 - A. 25°F**
 - B. 50°F**
 - C. 75°F**
 - D. 100°F**
- 5. What is a mandatory step required prior to beginning welding according to AWS D1.1?**
 - A. Performing a cost analysis**
 - B. Confirming welder qualifications are up to date**
 - C. Obtaining building permits**
 - D. Scheduling inspections**

6. Under what circumstance is preheating not required for welding?

- A. For thicknesses less than 1/8"**
- B. When the ambient temperature is above 50°F**
- C. When using low-hydrogen electrodes**
- D. When the base metal is mild steel**

7. What is the required root opening for a B-L2c-S weld to be made in a flat position with a 60° groove angle?

- A. 0 inch**
- B. 1/8 inch**
- C. 1/4 inch**
- D. 3/16 inch**

8. What does AWS D1.1 guideline say about repair welding?

- A. It must be performed randomly to test skill**
- B. It can be done by any qualified welder**
- C. It must be performed in accordance with approved welding procedures and qualified personnel**
- D. It is optional if the welder believes it is necessary**

9. In what position is the maximum diameter for SMAW low-hydrogen electrode restricted to 5/32"?

- A. 4G**
- B. 3F**
- C. 2G**
- D. 1G**

10. In AWS D1.1, which of the following is NOT considered a type of weld?

- A. Fillet weld**
- B. Butt weld**
- C. Slot weld**
- D. Spot weld**

Answers

SAMPLE

1. C
2. C
3. B
4. B
5. B
6. A
7. A
8. C
9. A
10. D

SAMPLE

Explanations

SAMPLE

1. Why is inspection critical in the welding process?

- A. To reduce the cost of welding
- B. To ensure aesthetic appeal
- C. To identify defects before finalization**
- D. It is not very important

Inspection is critical in the welding process primarily because it serves to identify defects before finalization. This proactive approach is essential for ensuring the integrity and safety of welded structures. By detecting potential issues such as incomplete fusion, crack formation, or improper joint preparation early on, inspectors can prevent compromised structural performance and potential failures in service. This practice not only contributes to higher quality workmanship but also aligns with safety regulations and standards that govern structural integrity in construction. Additionally, inspection can help improve the overall efficiency of the welding process by minimizing rework and the need for costly repairs later on. While the aesthetic appeal of welds might be a consideration in some applications, and cost reduction can be a factor through efficient practices, the primary focus of inspection is on quality and safety measures. Thus, identifying defects prior to the completion of the project is the paramount responsibility of the inspection phase in welding.

2. Which of the following welding processes is NOT included in the prequalified welding processes by AWS D1.1 code?

- A. SMAW
- B. SAW
- C. GTAW**
- D. FCAW

The correct choice highlights that the Gas Tungsten Arc Welding (GTAW) process is not designated as a prequalified welding process under AWS D1.1 Structural Welding Code - Steel. Prequalified welding processes are those that have established procedures and parameters that can be utilized without the necessity for additional qualification testing, based on the AWS D1.1 criteria. The prescriptive nature of prequalification is intended to simplify the process for welders and engineers, ensuring that they can rely on established techniques without needing to conduct extensive tests for certain welding methods. While SMAW (Shielded Metal Arc Welding), SAW (Submerged Arc Welding), and FCAW (Flux-Cored Arc Welding) have been determined by AWS D1.1 to meet specific requirements and are thus included in the prequalified processes, GTAW does not fall into this category. GTAW does require specific qualification due to its unique characteristics and applications, which may necessitate tailored procedures. Understanding these distinctions is crucial for adherence to the AWS D1.1 code, especially for ensuring compliance during project execution.

3. Why is pre-heating required in some welding processes according to the AWS D1.1 code?

- A. To reduce the cost of welding**
- B. To prevent cracking in certain materials**
- C. To speed up the welding process**
- D. To improve the appearance of the weld**

Pre-heating is required in certain welding processes according to the AWS D1.1 code primarily to prevent cracking in certain materials. This requirement is particularly important when working with high-strength steels or materials that are prone to hardening or hydrogen-induced cracking. When metal is heated during the welding process, the expansion and subsequent cooling can create stresses that lead to cracking. Pre-heating raises the overall temperature of the metal before welding begins, reducing the temperature differential between the weld and the base material. This approach helps to mitigate the risk of thermal shock and resulting stresses that could cause cracks. Furthermore, it can also assist in driving off moisture and contaminants that could lead to hydrogen absorption during the welding process, further reducing the likelihood of cracking. Overall, the focus on preventing cracks ensures structural integrity and reliability in welded connections, adhering to safety and performance standards outlined in the AWS D1.1 code.

4. What is the minimum preheat and inter-pass temperature when welding ASTM A572 grade 50 steel plate using E9018 electrodes?

- A. 25°F**
- B. 50°F**
- C. 75°F**
- D. 100°F**

The minimum preheat and inter-pass temperature requirement for welding ASTM A572 Grade 50 steel using E9018 electrodes is set at 50°F. Maintaining this temperature is crucial because it helps to reduce the risk of cracking in high-strength steel during the welding process. Preheating serves several purposes: it helps in lowering the cooling rate of the weld metal, which minimizes the formation of hard brittle microstructures within the weld and heat-affected zone that could lead to cracking. Additionally, a proper preheat can reduce the stresses that build up during the cooling phase after welding, ensuring that the integrity of the weld and the base material is preserved. The choice of 50°F is also in line with the guidelines provided in the AWS D1.1 code, ensuring that welders and engineers adhere to best practices when working with materials that exhibit certain characteristics prone to weld cracking. Other temperatures listed would either not provide sufficient protection against these risks or may be unnecessarily high for the materials involved.

5. What is a mandatory step required prior to beginning welding according to AWS D1.1?

- A. Performing a cost analysis**
- B. Confirming welder qualifications are up to date**
- C. Obtaining building permits**
- D. Scheduling inspections**

Confirming welder qualifications are up to date is critical before beginning any welding activities, as stipulated by AWS D1.1. This step ensures that the welders possess the necessary skills, knowledge, and certifications required for the specific type of welding being performed. It is essential to verify that they are qualified according to the pre-defined standards, which helps maintain the integrity and safety of the welding work being undertaken. This quality assurance process is fundamental in assuring compliance with the structural welding code, which aims to produce sound and durable welds in structural steelwork. By confirming the qualifications, the project supports appropriate workmanship and adherence to safety protocols, which are essential for long-term performance and reliability of the welded structures. Other options refer to processes that may be important for project management or regulatory compliance but are not directly mandated by the AWS D1.1 code before starting welding activities. While cost analysis, obtaining building permits, and scheduling inspections are valuable for overall project execution and regulatory adherence, they do not specifically focus on the readiness of the welder to execute the welding task at hand.

6. Under what circumstance is preheating not required for welding?

- A. For thicknesses less than 1/8"**
- B. When the ambient temperature is above 50°F**
- C. When using low-hydrogen electrodes**
- D. When the base metal is mild steel**

Preheating is essential in welding to prevent issues such as cracking in certain materials, particularly in thicker sections or when welding specific types of steel. The correct response indicates that preheating is not required for material thicknesses less than 1/8 inch. This guideline is based on the fact that thinner materials heat up more quickly and can dissipate heat faster than thicker materials, reducing the risk of strain that leads to cracking during the cooling process. In contrast, while ambient temperature and the type of electrodes used can influence the need for preheating, they do not universally exempt all welding processes under those conditions. For instance, the effectiveness of low-hydrogen electrodes can be enhanced by preheating in specific applications, even if the electrodes themselves are less susceptible to moisture. Similarly, mild steel may not require preheating in some contexts, but that doesn't automatically exempt applications involving thicker sections or critical welds. Thus, preheating is generally based on material thickness and the mechanical properties of the welded joint, making the threshold of 1/8 inch a critical measure.

7. What is the required root opening for a B-L2c-S weld to be made in a flat position with a 60° groove angle?

- A. 0 inch**
- B. 1/8 inch**
- C. 1/4 inch**
- D. 3/16 inch**

In the context of welding and the AWS D1.1 Structural Welding Code, the root opening refers to the space between the edges of the joint before it is welded. For a B-L2c-S weld specifically made in a flat position with a 60° groove angle, the allowed root opening is dictated by the groove specifications outlined in the code. Selecting a root opening of 0 inches signifies that the weld is intended to be made without any gap between the pieces being joined at the root. This is common in many groove weld applications where a tight fit is essential for optimal weld quality and strength. A zero root opening allows for better fusion and penetration of the weld metal, ensuring that there are no voids or weaknesses at the critical joint interface. Other suggested root openings, such as 1/8 inch, 1/4 inch, or 3/16 inch, can be appropriate in certain situations or for different types of welds and positions, but for this specific scenario regarding the B-L2c-S weld with a 60° groove angle in a flat position, the standard calls for no root opening. Therefore, a root opening of 0 inch is the correct choice.

8. What does AWS D1.1 guideline say about repair welding?

- A. It must be performed randomly to test skill**
- B. It can be done by any qualified welder**
- C. It must be performed in accordance with approved welding procedures and qualified personnel**
- D. It is optional if the welder believes it is necessary**

The guideline outlined in AWS D1.1 regarding repair welding emphasizes the necessity of adherence to approved welding procedures and the involvement of qualified personnel. This requirement ensures that any repair work meets the necessary safety and structural integrity standards defined by the code. Repair welding can involve critical elements of a structure, meaning that deviations from established procedures or involvement of unqualified personnel could lead to compromised safety or performance of the welded joints. In essence, having approved procedures ensures consistency and quality in the repair process, while qualified personnel possess the skills and knowledge to execute these repairs correctly. This approach mitigates risks associated with improper welding practices, ultimately upholding the integrity of the structure being repaired. It reflects the code's commitment to safety and adherence to engineering standards in construction and structural applications.

9. In what position is the maximum diameter for SMAW low-hydrogen electrode restricted to 5/32"?

- A. 4G**
- B. 3F**
- C. 2G**
- D. 1G**

The maximum diameter for SMAW (Shielded Metal Arc Welding) low-hydrogen electrodes being restricted to 5/32" occurs specifically in the 4G position. This restriction is based on the practical and safety considerations associated with welding overhead. The overhead position presents unique challenges, including the potential for slag to fall and the difficulty in controlling the weld pool. By limiting the electrode size, the welding process becomes easier to manage in terms of heat input and the stability of the molten weld pool. In overhead welding, using smaller diameter electrodes helps to mitigate issues related to weld sagging and promotes a more controlled and effective arc. The AWS D1.1 code emphasizes such limitations to ensure the integrity of the welds being performed in challenging positions, as larger electrodes could lead to increased risk of defects due to poor control over the molten material. Therefore, in the 4G position, the specific restriction on low-hydrogen electrode diameter to 5/32" is established to maintain the quality and reliability of overhead welds.

10. In AWS D1.1, which of the following is NOT considered a type of weld?

- A. Fillet weld**
- B. Butt weld**
- C. Slot weld**
- D. Spot weld**

In the context of AWS D1.1, the classification of weld types includes fillet welds, butt welds, and slot welds, all of which have specific characteristics and applications. A fillet weld is commonly used to join two surfaces at a right angle, creating a triangular cross-section and effectively providing strength in joints where members intersect. A butt weld is utilized to join two pieces of metal along edges that are aligned, which allows for high strength in linear applications. A slot weld, while less common, involves a weld made in a slot cut into one piece, essentially attaching it to another piece and finding particular uses in specialized applications. On the other hand, a spot weld is a type of weld used primarily in sheet metal applications, where the weld is localized to a very small area and is made by melting the base metal with a current at two contact points. While spot welding is indeed a recognized welding method in general practices, it is not classified as a type of weld in the same direct manner as the others listed. This distinction helps emphasize the specific structural applications that AWS D1.1 outlines for various weld types, focusing on those that directly fit the criteria for structural welding.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://awsd11openbook.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE