

Austin Training Entrance Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Where does depolarization primarily occur during the stimulation process?**
 - A. At the anode (+)**
 - B. Under the cathode (-)**
 - C. At the pulse generator**
 - D. In the tissue layers**

- 2. Which of the following is NOT a characteristic of chronic pain?**
 - A. Pain without apparent physical basis**
 - B. Inflammatory response to stimuli**
 - C. Persistent pain for 3-6+ months**
 - D. May increase in intensity over time**

- 3. What happens to the area of activation when amplitude is increased?**
 - A. Will not change**
 - B. Will increase the area of activation**
 - C. Will decrease the area of activation**
 - D. Will create a threshold response**

- 4. Which of the following features is important for the swift-lock anchor?**
 - A. Bluetooth connectivity**
 - B. Two eyelets**
 - C. BurstDR capability**
 - D. Rechargeable battery**

- 5. According to findings, which stimulation type is superior at affecting overall VAS scores in the SUNBURST study?**
 - A. Monopolar stimulation**
 - B. Linear stimulation**
 - C. Tonic stimulation**
 - D. Burst stimulation**

6. What was a key takeaway from the BOLDER study?

- A. Low-dose settings resulted in lower battery life**
- B. Patients did not benefit from ultra-low BurstDR settings**
- C. Ultra low BurstDR provides max therapeutic longevity without sacrificing pain relief**
- D. Higher doses are always more effective**

7. What type of pain is characterized by a painful response despite a non-painful stimulus?

- A. Paresthesia**
- B. Allodynia**
- C. Hyperalgesia**
- D. Neuropathic pain**

8. What RF power restrictions apply to Proclaim XR and 60cm octrode leads?

- A. Normal operational power allowed**
- B. No more power restrictions**
- C. Restricted only during initial setup**
- D. Power must be limited to 50%**

9. Which of the following best describes neuropathic pain?

- A. Pain that is felt directly from injured tissue**
- B. Pain originating in peripheral nerves due to dysfunction**
- C. Pain triggered by emotional stress**
- D. Pain that serves a semantic function**

10. Which types of reusable probes are offered for sale?

- A. Plastic and stainless steel**
- B. Durable kink-resistant nitinol and nylon**
- C. Stainless steel or durable kink-resistant nitinol**
- D. Copper and aluminum**

Answers

SAMPLE

1. B
2. B
3. B
4. B
5. D
6. C
7. B
8. B
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. Where does depolarization primarily occur during the stimulation process?

- A. At the anode (+)**
- B. Under the cathode (-)**
- C. At the pulse generator**
- D. In the tissue layers**

Depolarization primarily occurs under the cathode during the stimulation process. When an electrical stimulus is applied to the tissue, the cathode, which has a negative charge, attracts positive ions, such as sodium (Na+), towards it. This movement of ions across the cell membrane causes the interior of the cell to become more positive relative to the exterior, leading to depolarization. This process is essential for the generation of an action potential, allowing the cell to respond to stimuli effectively. In contrast, the anode does not primarily contribute to this process, as it typically results in hyperpolarization rather than depolarization. The pulse generator serves to produce the electrical signals but is not where depolarization occurs; rather, it's the source of the electrical current delivered to the tissue. Depolarization does not occur in the tissue layers themselves but rather at the specific sites where electrical currents are applied, most notably under the cathode.

2. Which of the following is NOT a characteristic of chronic pain?

- A. Pain without apparent physical basis**
- B. Inflammatory response to stimuli**
- C. Persistent pain for 3-6+ months**
- D. May increase in intensity over time**

Chronic pain is defined primarily by its persistence and the duration it lasts, usually extending beyond three to six months. A hallmark characteristic of chronic pain is that it can occur without an obvious physical cause or injury, making pain management and diagnosis particularly challenging. The correct option indicates that an inflammatory response to stimuli is not a characteristic of chronic pain. While acute pain is often associated with inflammation — such as pain resulting from an injury that prompts a physical response — chronic pain does not necessarily exhibit this response. Instead, chronic pain may exist independently of any ongoing inflammatory process or may not be linked to visible changes at the site of pain. Chronic pain can be complex, and while it may involve changes in how the nervous system processes pain (central sensitization), it does not inherently include an inflammatory response. As such, distinguishing between chronic and acute pain involves recognizing these characteristics clearly.

3. What happens to the area of activation when amplitude is increased?

- A. Will not change
- B. Will increase the area of activation**
- C. Will decrease the area of activation
- D. Will create a threshold response

When amplitude is increased, the area of activation expands. This is because a higher amplitude typically results in a stronger stimulus, which activates a larger number of neurons or muscle fibers within a given area. As a result, more tissue becomes engaged in response to the stimulus, leading to a broader area being activated. In various physiological contexts, such as in neuromuscular responses, an increased amplitude can cause not just a single motor unit to fire but also recruit additional motor units that were not activated by a lower amplitude stimulus. This principle is crucial in understanding concepts like muscle recruitment patterns during exercises, where higher intensity leads to the engagement of more muscle fibers for greater force production. While some choices suggest no change, a decrease, or a specific threshold response, the relationship between amplitude and the area of activation is straightforward: as stimulus intensity (amplitude) rises, the area of activation broadens in direct correlation. Therefore, the correct understanding lies in recognizing that increased amplitude effectively enhances the collective response of the involved biological systems.

4. Which of the following features is important for the swift-lock anchor?

- A. Bluetooth connectivity
- B. Two eyelets**
- C. BurstDR capability
- D. Rechargeable battery

The key feature of the swift-lock anchor that stands out is the presence of two eyelets. This design allows for secure and stable connections, enhancing the functionality and safety of the anchor when it is used for various applications. The two eyelets enable adjustments and facilitate a multi-point attachment system, which can be crucial in ensuring the anchor performs optimally under load. This structural design is essential for ensuring that the anchor can handle the expected demands, particularly in environments where reliability is paramount. Other options, while they may represent useful features in other contexts, do not pertain directly to the swift-lock anchor's efficacy. For instance, Bluetooth connectivity could enhance certain products but doesn't relate to the core functionalities expected from an anchor's physical design. BurstDR capability is a characteristic often linked with data recovery systems, which does not apply to anchoring technology. Lastly, while a rechargeable battery is common in many modern devices, it is not relevant to the operation or purpose of an anchor, which fundamentally relies on physical structure rather than electronic features.

5. According to findings, which stimulation type is superior at affecting overall VAS scores in the SUNBURST study?

- A. Monopolar stimulation**
- B. Linear stimulation**
- C. Tonic stimulation**
- D. Burst stimulation**

The superior effectiveness of burst stimulation in impacting overall Visual Analog Scale (VAS) scores in the SUNBURST study is attributed to its ability to deliver intermittent bursts of stimulation rather than continuous or steady stimulation. This unique pattern of electrical impulses seems to optimize the mechanism of action, potentially addressing pain modulation more effectively. Burst stimulation can enhance neural communication and alter pain perception pathways, resulting in improved outcomes as reflected by the VAS scores. Moreover, this stimulation type mimics natural firing patterns of neurons, which can be more conducive to achieving relief from chronic pain. As research demonstrates, burst stimulation creates a more efficient and effective engagement with neural pathways, leading to better overall patient experiences and reduced pain levels as indicated by the VAS scores in the study. In contrast, other stimulation types like monopolar, linear, and tonic stimulation may not provide the same level of efficacy in altering pain perception and may result in less favorable VAS scores due to differences in how they engage with the nervous system.

6. What was a key takeaway from the BOLDER study?

- A. Low-dose settings resulted in lower battery life**
- B. Patients did not benefit from ultra-low BurstDR settings**
- C. Ultra low BurstDR provides max therapeutic longevity without sacrificing pain relief**
- D. Higher doses are always more effective**

The key takeaway from the BOLDER study is that ultra-low BurstDR settings provide maximum therapeutic longevity while still maintaining effective pain relief. This finding is significant as it suggests that patients can achieve satisfactory pain management over extended periods without the need for higher power settings, which may not only be less sustainable but could also potentially lead to quicker battery depletion in devices used for pain management. The study highlights the balancing act between achieving effective pain relief and ensuring the longevity of the therapeutic device's battery life. With ultra-low settings, patients can benefit from long-lasting pain relief that does not compromise the functionality and duration of their pain management solution. This aspect is particularly important for individuals relying on devices such as spinal cord stimulators, as it can lead to improved quality of life and reduced need for device replacements.

7. What type of pain is characterized by a painful response despite a non-painful stimulus?

- A. Paresthesia**
- B. Allodynia**
- C. Hyperalgesia**
- D. Neuropathic pain**

The type of pain characterized by a painful response despite a non-painful stimulus is known as allodynia. This phenomenon occurs when a person experiences pain from stimuli that typically do not cause pain, such as light touch or temperature changes. Allodynia is often associated with various chronic pain conditions and can result from mechanisms such as central sensitization, where the nervous system becomes overly responsive to stimuli. In contrast, other terms describe different pain experiences. Paresthesia refers to an abnormal sensation, such as tingling or prickling, often without any actual painful response. Hyperalgesia involves an increased sensitivity to pain—where a painful stimulus feels more painful than it normally would—but does not involve a non-painful stimulus being perceived as painful, as seen in allodynia. Neuropathic pain is caused by damage or dysfunction in the nervous system and can present with various sensations, but it is not defined by the response to non-painful stimuli in the way allodynia is. Thus, recognizing allodynia is key for understanding how certain pain responses can arise from non-painful triggers.

8. What RF power restrictions apply to Proclaim XR and 60cm octrode leads?

- A. Normal operational power allowed**
- B. No more power restrictions**
- C. Restricted only during initial setup**
- D. Power must be limited to 50%**

The correct answer indicates that there are no additional power restrictions placed on the Proclaim XR and 60cm octrode leads. This means that users can operate these devices without having to worry about specific power limitations, allowing for a more versatile application of the technology in various scenarios. In medical contexts, devices often come with operational guidelines that dictate the maximum allowable power levels to ensure safety and effectiveness. The absence of power restrictions for the Proclaim XR and its leads suggests that they have been designed to operate safely at normal levels without imposing limitations, thus providing flexibility and ease of use for practitioners. When considering options that might suggest different levels of restriction, such as limiting power to a certain percentage or having restrictions only during setup, these do not apply in this case. The straightforward operational nature of the Proclaim XR and its leads simplifies the process, allowing users to focus on their primary functions without navigating complex guidelines regarding power usage.

9. Which of the following best describes neuropathic pain?

- A. Pain that is felt directly from injured tissue**
- B. Pain originating in peripheral nerves due to dysfunction**
- C. Pain triggered by emotional stress**
- D. Pain that serves a semantic function**

Neuropathic pain is characterized as pain that originates from dysfunction in the peripheral nerves. This type of pain results from damage or disease affecting the nervous system itself, rather than from the direct injury of tissue. Conditions such as diabetes, shingles, or traumatic injuries can lead to neuropathic pain, manifesting as sensations that are often described as burning, tingling, or shooting pain. In contrast, pain felt directly from injured tissue refers to nociceptive pain, where the discomfort is a response from damaged tissues. Pain triggered by emotional stress points to psychosomatic responses that can influence one's perception of pain but do not define neuropathic pain. Lastly, pain that serves a semantic function could pertain to pain perceived as a protective mechanism, which again does not align with the nature of neuropathic pain that stems from nerve dysfunction. Therefore, the best description of neuropathic pain is its origin in the dysfunction of peripheral nerves.

10. Which types of reusable probes are offered for sale?

- A. Plastic and stainless steel**
- B. Durable kink-resistant nitinol and nylon**
- C. Stainless steel or durable kink-resistant nitinol**
- D. Copper and aluminum**

The correct option emphasizes the use of stainless steel and durable kink-resistant nitinol as the types of reusable probes offered for sale. Stainless steel is a widely recognized material in medical and scientific applications due to its robustness, resistance to corrosion, and ability to be sterilized, making it an ideal choice for reusable instruments. On the other hand, nitinol is a remarkable alloy that combines nickel and titanium, which provides excellent flexibility and strength, along with a unique ability to return to a predetermined shape when heated, known as shape memory. This combination of properties is particularly beneficial in applications where probes must endure repeated use without compromising performance or integrity. While other materials mentioned, such as plastic, nylon, copper, and aluminum, have their advantages, they may not provide the same level of durability or reliability needed in the same contexts as stainless steel or nitinol. Therefore, the correct choice highlights materials that offer the best performance characteristics suited for reusable probes, ensuring both effectiveness and safety in their intended uses.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://austintrainingentrance.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE