

ASVAB Arithmetic Reasoning Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	15

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

1. If 50% of (x) equals 150, what is 75% of (x)?

- A. 225
- B. 250
- C. 275
- D. 300

2. What is the boiling point of water in Fahrenheit?

- A. 32°F
- B. 100°F
- C. 212°F
- D. 250°F

3. How many hectoliters are in 10 decaliters?

- A. 1 hL
- B. 5 hL
- C. 10 hL
- D. 0.1 hL

4. What is the best option for Michael if he needs to buy 55 gallons of paint at the least cost?

- A. two 25-gallon buckets at \$550 each
- B. eleven 5-gallon buckets at \$108 each
- C. six 10-gallon buckets at \$215 each
- D. fifty-five 1-gallon buckets at \$23 each

5. What word indicates a multiplication operation?

- A. Exceed
- B. Times
- C. Less than
- D. Decreased

6. What is the centimeter equivalent of 1 meter in decimeters?

- A. 0.1 dm
- B. 1 dm
- C. 10 dm
- D. 100 dm

7. If a man has a salary of \$30,000 and receives a 10% raise, what will his new salary be?

- A. \$3,000
- B. \$33,000
- C. \$30,500
- D. \$36,000

8. If a car needs 16 gallons of gas for a trip and gas costs \$2.82 per gallon, what is the total cost for the gas?

- A. \$48.92
- B. \$45.12
- C. \$50.18
- D. \$38.14

9. What must you do to the denominator when converting a fraction to a decimal?

- A. Multiply it by the numerator
- B. Leave it unchanged
- C. Divide it into the numerator
- D. Replace it with a whole number

10. What is the sum of angles in a straight line?

- A. 90 degrees
- B. 180 degrees
- C. 360 degrees
- D. 270 degrees

Answers

SAMPLE

1. A
2. C
3. A
4. B
5. B
6. C
7. B
8. B
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. If 50% of (x) equals 150, what is 75% of (x)?

- A. 225**
- B. 250**
- C. 275**
- D. 300**

To find 75% of (x) , we first need to determine the value of (x) based on the information given that 50% of (x) equals 150. The equation can be set up as follows: $0.5x = 150$. To solve for (x) , you can multiply both sides of the equation by 2: $x = 150 \times 2$ $x = 300$. Now that we have found (x) to be 300, we can now find 75% of (x) : $0.75x = 0.75 \times 300$. Calculating this gives: $0.75 \times 300 = 225$. Thus, 75% of (x) is 225. The correct choice reflects this calculation, confirming that option A is indeed the right answer, as it accurately represents 75% of the determined value of (x) .

2. What is the boiling point of water in Fahrenheit?

- A. 32°F**
- B. 100°F**
- C. 212°F**
- D. 250°F**

The boiling point of water is defined as the temperature at which water transitions from a liquid to a gas. Under standard atmospheric pressure (sea level), this temperature is 212°F. This value is a well-established fact and serves as a key reference point in both scientific contexts and everyday life. When water reaches this temperature, it begins to form steam, signaling that it has reached its boiling point. This is particularly important in various applications, such as cooking or industrial processes, where precise temperature control is crucial. Understanding this concept of boiling points in Fahrenheit allows for practical applications, such as knowing when to add food to boiling water to ensure proper cooking. This foundational temperature reference, therefore, underlines both scientific principles and real-world applications.

3. How many hectoliters are in 10 decaliters?

- A. 1 hL**
- B. 5 hL**
- C. 10 hL**
- D. 0.1 hL**

To determine how many hectoliters are in 10 decaliters, it's important to understand the relationship between these two units of measurement in the metric system. 1 hectoliter (hL) equals 100 liters, and 1 decaliter (daL) equals 10 liters. Therefore, to convert from decaliters to hectoliters, we first convert decaliters into liters. Since 10 decaliters equals 10×10 liters, it corresponds to 100 liters. Now, to convert 100 liters into hectoliters, we need to know that there are 100 liters in 1 hectoliter. Thus, $100 \text{ liters} \div 100 \text{ liters/hL} = 1 \text{ hL}$. This calculation shows that 10 decaliters is equivalent to 1 hectoliter. Understanding these unit conversions helps clarify why this answer is correct as it directly follows the established relationships within the metric system.

4. What is the best option for Michael if he needs to buy 55 gallons of paint at the least cost?

- A. two 25-gallon buckets at \$550 each**
- B. eleven 5-gallon buckets at \$108 each**
- C. six 10-gallon buckets at \$215 each**
- D. fifty-five 1-gallon buckets at \$23 each**

To determine the best option for Michael to buy 55 gallons of paint at the least cost, we can calculate the total cost for each option. For the first option, purchasing two 25-gallon buckets at \$550 each results in: $2 \text{ buckets} \times \$550 = \$1100$. This option provides 50 gallons, which is insufficient. For the second option, eleven 5-gallon buckets at \$108 each yields: $11 \text{ buckets} \times \$108 = \$1188$. This option meets the required 55 gallons and is fully enough. The third option involves six 10-gallon buckets at \$215 each: $6 \text{ buckets} \times \$215 = \$1290$. This also exceeds the cost of option B, while providing 60 gallons, which again is more than needed. Lastly, the fourth option of fifty-five 1-gallon buckets at \$23 each totals: $55 \text{ buckets} \times \$23 = \$1265$. Though it covers the needed volume, it is more expensive than the second option. Thus, option B is the most cost-effective choice for acquiring exactly 55 gallons of paint at \$1188, making it the best decision for Michael in terms of total expenditure.

5. What word indicates a multiplication operation?

- A. Exceed**
- B. Times**
- C. Less than**
- D. Decreased**

The term that signifies a multiplication operation is "Times." In arithmetic and mathematics, "times" is commonly used to indicate that one number is to be multiplied by another. For example, when you say "6 times 4," it clearly specifies that you are performing the multiplication of 6 and 4, resulting in 24. This terminology is foundational in understanding basic arithmetic operations, especially when dealing with equations and mathematical expressions. Other terms in the options either do not represent multiplication or relate to different mathematical concepts. Understanding the usage of "times" in both elementary mathematics and in more advanced calculations is crucial for performing accurate arithmetic operations.

6. What is the centimeter equivalent of 1 meter in decimeters?

- A. 0.1 dm
- B. 1 dm
- C. 10 dm**
- D. 100 dm

To understand the relationship between meters and decimeters, it's essential to clarify the metric conversions involved. One meter is equal to 10 decimeters. This means that if you have 1 meter, you can divide it into 10 equal parts, and each part measures 1 decimeter. Now, when converting meters directly into decimeters, the multiplication factor is straightforward: since there are 10 decimeters in each meter, multiplying 1 meter by 10 gives a result of 10 decimeters. Therefore, the centimeter equivalent of 1 meter in decimeters is accurately represented by 10. This understanding is crucial for addressing any questions regarding metric conversions, as it emphasizes the base-10 nature of the metric system.

7. If a man has a salary of \$30,000 and receives a 10% raise, what will his new salary be?

- A. \$3,000
- B. \$33,000**
- C. \$30,500
- D. \$36,000

To find the new salary after a 10% raise on a \$30,000 salary, you need to calculate the amount of the raise first. This is done by multiplying the original salary by the percentage increase, expressed as a decimal. First, convert 10% to a decimal by dividing 10 by 100, which gives you 0.10. Then, multiply the original salary by this decimal: $\$30,000 * 0.10 = \$3,000$. This amount represents the raise. To find the new salary, you need to add the raise to the original salary: $\$30,000 + \$3,000 = \$33,000$. Thus, the new salary after a 10% raise is \$33,000. The calculation clearly shows how the raise was derived and added to the original salary, confirming that the correct answer is indeed \$33,000.

8. If a car needs 16 gallons of gas for a trip and gas costs \$2.82 per gallon, what is the total cost for the gas?

- A. \$48.92
- B. \$45.12**
- C. \$50.18
- D. \$38.14

To determine the total cost for the gas, you need to multiply the number of gallons required for the trip by the cost per gallon. In this scenario, the car needs 16 gallons of gas, and the price of gas is \$2.82 per gallon. The calculation will look like this: Total cost = Number of gallons × Cost per gallon Total cost = 16 gallons × \$2.82/gallon Total cost = $16 \times 2.82 = \$45.12$ This calculation clearly shows that the total cost for gas needed for the trip is \$45.12, which aligns with the choice identified earlier.

9. What must you do to the denominator when converting a fraction to a decimal?

- A. Multiply it by the numerator**
- B. Leave it unchanged**
- C. Divide it into the numerator**
- D. Replace it with a whole number**

When converting a fraction to a decimal, the correct action is to divide the numerator by the denominator. This process allows you to represent the fraction as a decimal value that reflects the same quantity. For example, if you have the fraction $3/4$, you would divide 3 (the numerator) by 4 (the denominator). Performing the division gives you 0.75, which is the decimal equivalent of the fraction $3/4$. This method is fundamental in understanding how fractions and decimals are interconnected in mathematics. Hence, dividing the numerator by the denominator is essential to finding the decimal form of any given fraction.

10. What is the sum of angles in a straight line?

- A. 90 degrees**
- B. 180 degrees**
- C. 360 degrees**
- D. 270 degrees**

The sum of angles in a straight line is 180 degrees. This concept comes from the basic properties of geometry, specifically relating to angles formed by intersecting lines. When two angles are adjacent and form a straight line, their measures add up to 180 degrees. This is because a straight line is essentially the angle formed by rotating from one end of the line to the other end, which represents half of a complete circle (360 degrees). Therefore, the two angles on a straight line create a supplementary angle relationship, which means that together they complete the straight angle of 180 degrees. This fundamental property is crucial in various applications in geometry and trigonometry, ensuring that one can effectively work with angles and their relationships.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://asvabarithmeticreasoning.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE