

ASCP Technologist in Immunology (I) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which of the following is NOT a hallmark of chronic HBV infection?**
 - A. Low levels of HBV DNA in serum**
 - B. High levels of HBeAg**
 - C. Presence of anti-HBs antibodies**
 - D. Continued virus replication**
- 2. After a penicillin injection, a patient rapidly develops respiratory distress, vomiting, and hives. This reaction is primarily mediated by?**
 - A. IgM**
 - B. IgE**
 - C. IgG**
 - D. IgA**
- 3. In laser flow cytometry, the application of a voltage potential to sample droplets results in what?**
 - A. The combination of different cell types**
 - B. The separation of cells into subpopulations based on their charge**
 - C. The measurement of cell size only**
 - D. The identification of specific antigens on cells**
- 4. What follows the addition of the peroxidase linked drug conjugate in a classical ELISA test?**
 - A. Colorimetric evaluation**
 - B. Plate washing**
 - C. Sample dilution**
 - D. Final incubation**
- 5. Which laboratory finding is commonly associated with patients suffering from systemic lupus erythematosus?**
 - A. Low titers of DNA**
 - B. Normal levels of C-reactive protein**
 - C. High titers of DNA**
 - D. Negative antinuclear antibody test**

6. Which cells are known to be actively phagocytic?

- A. Neutrophils, eosinophils, and monocytes
- B. B lymphocytes and T lymphocytes
- C. Basophils and natural killer cells
- D. Dendritic cells and macrophages

7. What antibodies are typically seen in high titers in patients with chronic active hepatitis?

- A. Anti-mitochondrial antibodies
- B. Anti-nuclear antibodies
- C. Anti-smooth muscle antibodies
- D. Anti-thyroid antibodies

8. What activity is primarily associated with the C3B component in the complement system?

- A. Viral neutralization
- B. Opsonization
- C. Membrane lysis
- D. Inflammation promotion

9. What determines if serological test results are diagnostic when drawn from a patient for a viral disease?

- A. The first antibody titer
- B. The second antibody titer is at least 4x the first
- C. If there is a visible reaction
- D. The presence of IgM antibodies

10. How are membrane-bound immunoglobulin molecules anchored?

- A. By a disulfide bond
- B. With a carbohydrate chain
- C. By a hydrophobic sequence of about 26 residues
- D. Using a lipid anchor

Answers

SAMPLE

1. C
2. B
3. B
4. B
5. C
6. A
7. C
8. B
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. Which of the following is NOT a hallmark of chronic HBV infection?

- A. Low levels of HBV DNA in serum**
- B. High levels of HBeAg**
- C. Presence of anti-HBs antibodies**
- D. Continued virus replication**

The presence of anti-HBs antibodies is indeed not a hallmark of chronic Hepatitis B virus (HBV) infection. In chronic HBV infection, the immune response is unable to fully clear the virus, which leads to persistent infection and does not typically result in the production of anti-HBs antibodies. Anti-HBs antibodies are generally produced after successful resolution of a Hepatitis B infection or following vaccination against the virus. In chronic cases, patients can often be HBsAg positive (indicating ongoing infection) but lack the development of these protective antibodies. The presence of anti-HBs would suggest immunity and control of the virus, which is contrary to the nature of chronic infection where the virus continues to replicate. In chronic HBV infection, it is expected to observe low to moderate levels of HBV DNA in the serum, as well as high levels of HBeAg, indicating active viral replication and increased infectivity. Continued virus replication is a significant characteristic of chronic infection, contrasting with the immune response typically seen in resolved infections where anti-HBs antibodies would be present.

2. After a penicillin injection, a patient rapidly develops respiratory distress, vomiting, and hives. This reaction is primarily mediated by?

- A. IgM**
- B. IgE**
- C. IgG**
- D. IgA**

The reaction described is primarily mediated by IgE antibodies. In an allergic response to penicillin, the immune system mistakenly identifies the drug as a harmful substance and produces IgE antibodies specific to it. Upon subsequent exposure to the same allergen (in this case, penicillin), these IgE antibodies bind to mast cells and basophils, leading to the release of histamines and other chemical mediators. This releases a variety of symptoms, including respiratory distress, vomiting, and hives, all of which are characteristic of a Type I hypersensitivity reaction. IgM, IgG, and IgA do not primarily mediate acute hypersensitivity reactions. IgM is typically the first antibody produced in response to an infection, and it plays a role in classical complement activation. IgG, although it can lead to allergic reactions in certain contexts (like delayed hypersensitivity), is predominantly involved in opsonization and pathogen neutralization. IgA is primarily found in mucosal areas and does not play a direct role in the rapid allergic reactions seen in this scenario. Thus, IgE is the correct answer as it is the antibody class directly involved in mediating the rapid onset of symptoms following exposure to allergens like penicillin.

3. In laser flow cytometry, the application of a voltage potential to sample droplets results in what?

- A. The combination of different cell types**
- B. The separation of cells into subpopulations based on their charge**
- C. The measurement of cell size only**
- D. The identification of specific antigens on cells**

In laser flow cytometry, applying a voltage potential to sample droplets causes the separation of cells into subpopulations based on their charge. This technique employs electrical forces to sort cells after they are illuminated by a laser. As cells pass through the laser beam, the system detects light scatter and fluorescence emitted from the cells, which can be indicative of various characteristics, such as size or the presence of specific labels. When a voltage is applied, charged cells will experience electrostatic forces that allow them to be directed into different collection channels. This means that cells can be categorized and sorted based on their surface charge, which is often a reflection of the cell type or the presence of specific surface markers. While measuring cell size and identifying specific antigens are key functions of flow cytometry, they do not directly result from the application of voltage potentials to the droplets. The combination of different cell types is also not a function of the voltage application, as each cell is typically analyzed individually based on its distinguishing characteristics rather than combined. Therefore, the focus on separation by charge highlights the specific role voltage plays in facilitating the distinction of various cell populations in this analytical technique.

4. What follows the addition of the peroxidase linked drug conjugate in a classical ELISA test?

- A. Colorimetric evaluation**
- B. Plate washing**
- C. Sample dilution**
- D. Final incubation**

In a classical ELISA test, after adding the peroxidase-linked drug conjugate, the next step is to ensure that any unbound conjugate is removed from the wells of the plate. This is achieved through plate washing. Washing helps to eliminate excess conjugate that has not bound to the target, thereby reducing background noise and enhancing the specificity of the assay. Following the addition of the peroxidase-linked conjugate, a binding event occurs—if the target analyte is present, the conjugate binds to it. To ensure that only specifically bound conjugate is retained, the plate is then washed, which is crucial for achieving accurate and reliable results in the assay. The next step after washing would typically involve a colorimetric evaluation, as it is during that phase that the actual detection of the bound conjugate occurs. However, washing must come first to prepare the plate for this evaluation. Thus, the sequence of steps in performing an ELISA methodology highlights the significance of proper washing following the addition of the conjugate.

5. Which laboratory finding is commonly associated with patients suffering from systemic lupus erythematosus?

- A. Low titers of DNA**
- B. Normal levels of C-reactive protein**
- C. High titers of DNA**
- D. Negative antinuclear antibody test**

In systemic lupus erythematosus (SLE), one of the hallmark laboratory findings is the presence of high titers of anti-double-stranded DNA (dsDNA) antibodies. These antibodies are specifically associated with the disease and are often correlated with disease activity and severity. The presence of high levels of anti-dsDNA is used diagnostically to help confirm SLE in patients presenting with symptoms consistent with the condition. This finding reflects the underlying autoimmune nature of SLE, where the body's immune system mistakenly targets its own DNA. High titers of anti-dsDNA antibodies are indicative of the active disease and can also help monitor disease flare-ups or response to treatment. The other options do not reflect the typical laboratory findings associated with SLE accurately. For example, low titers of DNA would not be characteristic of the disease, nor would a normal level of C-reactive protein, as elevated levels are usually observed in inflammatory responses. A negative antinuclear antibody test is also not typical for patients with SLE, since the majority of SLE patients demonstrate positive ANA. Thus, high titers of DNA antibodies (specifically anti-dsDNA) are a key finding in patients suffering from systemic lupus erythematosus.

6. Which cells are known to be actively phagocytic?

- A. Neutrophils, eosinophils, and monocytes**
- B. B lymphocytes and T lymphocytes**
- C. Basophils and natural killer cells**
- D. Dendritic cells and macrophages**

Neutrophils, eosinophils, and monocytes are recognized as actively phagocytic cells in the immune system. Neutrophils are among the first responders to site infections; they actively engulf and digest pathogens such as bacteria and fungi through the process of phagocytosis. They contain granules filled with enzymes and antimicrobial substances that help in breaking down the engulfed material. Eosinophils primarily play a role in combating multicellular parasites and also contribute to inflammatory responses, especially in allergic reactions. While they are less efficient at phagocytosis compared to neutrophils, they can still engulf smaller particles and pathogens. Monocytes circulate in the bloodstream and migrate to tissues where they differentiate into macrophages or dendritic cells, both of which are highly effective phagocytes. Macrophages, in particular, are known for their ability to engulf large particles, dead cells, and pathogens, playing a critical role in both innate and adaptive immunity. The other choices consist of cells that either primarily function in adaptive immunity, such as B and T lymphocytes, or in mediating allergic responses and cytotoxicity, like basophils and natural killer cells, which are not primarily involved in phagocytosis. Thus

7. What antibodies are typically seen in high titers in patients with chronic active hepatitis?

- A. Anti-mitochondrial antibodies**
- B. Anti-nuclear antibodies**
- C. Anti-smooth muscle antibodies**
- D. Anti-thyroid antibodies**

In patients with chronic active hepatitis, the presence of high titers of anti-smooth muscle antibodies is indicative of an autoimmune component often associated with autoimmune hepatitis. These antibodies target smooth muscle, and their detection helps in the diagnosis of autoimmune hepatitis, where the immune system mistakenly attacks the liver tissue. The presence of these antibodies correlates with liver inflammation and may lead to significant liver damage if left untreated. Anti-smooth muscle antibodies are commonly found in conjunction with other autoimmune markers, contributing to a broader profile that informs the diagnosis and management of the disease. Other antibodies listed—such as anti-mitochondrial antibodies and anti-nuclear antibodies—are associated with different autoimmune conditions and liver diseases but are not specifically indicative of chronic active hepatitis in the same way that anti-smooth muscle antibodies are. Anti-thyroid antibodies pertain to thyroid dysfunctions and are unrelated to hepatic conditions directly.

8. What activity is primarily associated with the C3B component in the complement system?

- A. Viral neutralization**
- B. Opsonization**
- C. Membrane lysis**
- D. Inflammation promotion**

The C3B component of the complement system plays a crucial role in opsonization, which enhances the immune system's ability to identify and eliminate pathogens. Opsonization involves the tagging of pathogens, such as bacteria and viruses, with complement proteins, particularly C3B, which marks them for recognition and ingestion by phagocytes like macrophages and neutrophils. When C3B binds to the surface of a pathogen, it effectively labels it, facilitating its uptake by phagocytic cells that have receptors for C3B. This process significantly increases the efficiency of phagocytosis because it allows immune cells to recognize and target pathogens more effectively than they would in the absence of these tags. The other options refer to important functions of the complement system but do not directly emphasize the primary role of C3B. For instance, while C3B can contribute to inflammation and membrane lysis, these processes are more associated with different components of the complement cascade and its role in forming the membrane attack complex (MAC) or in promoting inflammatory responses through the release of anaphylatoxins like C3A. Therefore, the primary activity linked directly to C3B is its role in opsonization.

9. What determines if serological test results are diagnostic when drawn from a patient for a viral disease?

- A. The first antibody titer**
- B. The second antibody titer is at least 4x the first**
- C. If there is a visible reaction**
- D. The presence of IgM antibodies**

For serological tests used to diagnose viral diseases, determining diagnostic results often relies on measuring changes in antibody titers over time. The second antibody titer being at least four times greater than the first indicates an increase in antibody levels, which is typically suggestive of a recent or active infection. This fourfold rise strongly supports the diagnosis because it reflects the patient's immune response to the viral antigen. In contrast, the first antibody titer alone may not provide sufficient information about the timing of infection or the immune response, as it can indicate past exposure but not necessarily current infection. Presence of a visible reaction can be helpful, but it does not quantify the immune response or confirm active disease. The presence of IgM antibodies is also an important marker for recent infections, but it is not the sole determinant; therefore, the fourfold increase in antibody titer is a more definitive hallmark of an ongoing immune response indicative of a current infection.

10. How are membrane-bound immunoglobulin molecules anchored?

- A. By a disulfide bond**
- B. With a carbohydrate chain**
- C. By a hydrophobic sequence of about 26 residues**
- D. Using a lipid anchor**

Membrane-bound immunoglobulin molecules, commonly found on B lymphocytes, are anchored in the membrane by a hydrophobic sequence of about 26 amino acid residues. This hydrophobic region, often referred to as a transmembrane domain, interacts with the lipid bilayer of the cell membrane, allowing the immunoglobulin to remain embedded and functional as a receptor. This anchoring mechanism is crucial for the immunoglobulins to participate in cell signaling and immune responses; they serve as receptors that can bind antigens and activate the B cell. The transmembrane domain's length and hydrophobic properties are specifically designed to facilitate this interaction with the cellular membrane. Other options like a disulfide bond, carbohydrate chain, or lipid anchor do not play a role in the anchoring of membrane-bound immunoglobulins. Disulfide bonds are primarily involved in stabilizing protein structures, carbohydrate chains may be associated with glycosylation but do not anchor the molecule to the membrane, and while lipid anchors are used in some proteins, they are not the mechanism employed by immunoglobulins for membrane attachment.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://ascpimmunology.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE