Article 250 - Grounding and Bonding Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. What should be ensured if a grounding connection is made at both the source and first disconnecting means?
 - A. It can create a parallel path for the grounded conductor
 - B. It cannot create a parallel path for the grounded conductor
 - C. It must be made using a larger conductor
 - D. It is permissible if ungrounded conductors are used
- 2. What is the role of the main bonding jumper in the service equipment?
 - A. Connects ungrounded conductors only
 - **B.** Isolates equipment grounding conductors
 - C. Links equipment grounding to the grounded conductor
 - D. Works as a backup for service disconnecting means
- 3. What risk is associated with an unbonded grounding system?
 - A. Increased energy costs associated with the system.
 - B. Electric shock hazards due to voltage differences.
 - C. Reduced lifespan of electrical equipment.
 - D. Grounding system failure under high loads.
- 4. How does altitude impact grounding systems?
 - A. It significantly increases grounding system efficiency.
 - B. It does not directly affect grounding systems.
 - C. It always requires additional grounding measures.
 - D. It increases the need for bonding conductors.
- 5. What ensures proper attachment of main bonding and system bonding jumpers?
 - A. They must be self-tapping screws
 - B. They must be installed according to specified methods
 - C. They should be welded in place
 - D. They can be taped to the connection

- 6. What should not be considered as an effective ground-fault current path?
 - A. The bonding conductor
 - B. The electrical supply source
 - C. The earth
 - D. The grounding electrode
- 7. What is a possible advantage of solidly grounded systems?
 - A. They can operate without any bonding.
 - B. They typically provide a lower impedance path to ground.
 - C. They allow for higher voltage insulation.
 - D. They have less complexity in installation.
- 8. What should be done if soil resistivity is too high at a site?
 - A. Reduce the size of the grounding electrode
 - B. Use grounding electrodes made of aluminum
 - C. Consider electing additional grounding electrodes or utilizing ground-enhancing chemicals
 - D. Ignore the resistivity as it does not affect grounding
- 9. What must be done regarding ground detectors in ungrounded AC systems operating at 120 volts and above?
 - A. They should be installed only after the system is tested
 - B. They must be connected as close as practicable to the supply source
 - C. They are not necessary for systems under 1000 volts
 - D. They should only be installed by certified professionals
- 10. When is an additional grounding connection required at a transformer outside the building?
 - A. Only if it is a dual-fed service
 - B. Always, regardless of the system
 - C. When there is a high-impedance grounded neutral system
 - D. When the transformer supplies the service

Answers

- 1. B 2. C
- 3. B

- 3. B 4. B 5. B 6. C 7. B 8. C 9. B 10. D

Explanations

- 1. What should be ensured if a grounding connection is made at both the source and first disconnecting means?
 - A. It can create a parallel path for the grounded conductor
 - B. It cannot create a parallel path for the grounded conductor
 - C. It must be made using a larger conductor
 - D. It is permissible if ungrounded conductors are used

When a grounding connection is made at both the source and the first disconnecting means, it is crucial that it does not create a parallel path for the grounded conductor. Establishing a second grounding connection can lead to multiple grounding points for the same system, which can inadvertently create parallel paths for fault currents. This situation can compromise the effectiveness of the ground fault protection systems, introduce potential differences between the grounding points, and create safety hazards. A single grounding connection is essential in maintaining the integrity and safety of the grounding system. The primary purpose of grounding is to provide a low-resistance path to direct fault currents safely to the earth, minimizing the risk of electrical shock and ensuring the reliable performance of electrical equipment. If there are multiple grounding points, it could lead to complications that increase the risk of electrical failures and potentially hazardous conditions. Thus, ensuring that only one grounding point exists in a given portion of the system is vital for effective grounding and bonding practices.

- 2. What is the role of the main bonding jumper in the service equipment?
 - A. Connects ungrounded conductors only
 - **B.** Isolates equipment grounding conductors
 - C. Links equipment grounding to the grounded conductor
 - D. Works as a backup for service disconnecting means

The main bonding jumper plays a critical role in establishing a direct electrical connection between the equipment grounding conductors and the grounded conductor, which is typically the neutral conductor. This connection is essential for ensuring that all metallic parts of the electrical system are properly grounded. By linking these two conductors, the main bonding jumper helps maintain the same electrical potential between the system components, which is fundamental for preventing electric shocks and ensuring the overall safety of the electrical system. In addition, this bonding is vital for the operation of protective devices. If a fault occurs, the bonding jumper allows fault current to flow back through the grounded conductor, enabling overcurrent protective devices to operate effectively and disconnect the faulty circuit from the power supply, thus enhancing safety. This ensures that if a live wire comes into contact with any metal parts of the system, the fault current will have a clear path back to the source rather than causing potential hazards. Understanding the function of the main bonding jumper is essential for anyone involved in electrical work, as it is a key component in grounding and bonding practices.

3. What risk is associated with an unbonded grounding system?

- A. Increased energy costs associated with the system.
- B. Electric shock hazards due to voltage differences.
- C. Reduced lifespan of electrical equipment.
- D. Grounding system failure under high loads.

An unbonded grounding system poses a significant risk of electric shock hazards due to voltage differences. In a properly bonded system, all conductive parts are interconnected, ensuring that any fault conditions will equalize voltage and direct fault currents safely to the ground. This bonding creates a low-resistance path to ground, reducing the potential for dangerous voltage differences between earthed surfaces and equipment. When grounding is unbonded, different conductive surfaces may have varying voltages, especially during fault conditions. This situation can create a scenario where a person touching two surfaces at different potential could experience a dangerous shock. Electric shock hazards become particularly serious in environments with wet conditions or when individuals could inadvertently create a complete circuit by touching different surfaces. Therefore, adequate bonding is essential to ensure safety and prevent voltage discrepancies that can lead to electric shock incidents.

4. How does altitude impact grounding systems?

- A. It significantly increases grounding system efficiency.
- B. It does not directly affect grounding systems.
- C. It always requires additional grounding measures.
- D. It increases the need for bonding conductors.

Altitude can affect grounding systems indirectly, but it does not have a direct impact on their overall function. At higher altitudes, the soil resistivity can change due to a variety of factors such as temperature and moisture levels, which can influence the electrical conductivity of the ground. However, these variations do not inherently mean that the grounding system will be less effective or require changes to the core design unless the soil resistivity significantly alters the resistance of the grounding system. Grounding systems are designed to provide a low-resistance path for fault currents to safely dissipate into the earth. The fundamental grounding principles remain consistent regardless of altitude; the primary focus should be on soil characteristics at the specific location rather than the altitude itself. Therefore, while altitude may have some indirect effects on grounding practices based on local conditions, it does not directly affect the design, effectiveness, or necessity of grounding systems in a universally applicable way.

5. What ensures proper attachment of main bonding and system bonding jumpers?

- A. They must be self-tapping screws
- B. They must be installed according to specified methods
- C. They should be welded in place
- D. They can be taped to the connection

The proper attachment of main bonding and system bonding jumpers is crucial for ensuring an effective grounding and bonding system. When these jumpers are installed according to specified methods, it guarantees that they meet safety requirements, will perform effectively under fault conditions, and maintain electrical connectivity. The specified methods often include following guidelines set forth in the National Electrical Code (NEC) and manufacturer instructions, which detail the appropriate materials, tools, and techniques for installation. This adherence to established installation practices is vital for preventing unintended electrical resistance and potential points of failure, which could compromise the safety of the electrical system. By using the correct techniques, one can ensure the reliability and performance of the grounding and bonding system, protecting both equipment and people from electrical hazards. Other options may not adhere to these rigorous safety standards, as self-tapping screws might not provide the same level of secure, conductive connection required, welding could be impractical or unnecessary for bonding tasks, and taping connections would not provide a permanent or reliable conductive bond.

6. What should not be considered as an effective ground-fault current path?

- A. The bonding conductor
- B. The electrical supply source
- C. The earth
- D. The grounding electrode

While it might seem possible to consider the earth itself as an effective ground-fault current path, it's important to understand how grounding and bonding function within an electrical system. An effective ground-fault current path is designed to safely conduct fault currents back to the source of the electrical system, ensuring that overcurrent devices can trip and clear the fault condition effectively. The bonding conductor, electrical supply source, and grounding electrode are all integral parts of the grounding system, facilitating a reliable path for fault currents. The earth, while it can absorb electrical energy, does not provide a defined and low-resistance return path for fault currents. Instead, it acts more like a passive dump for stray currents and does not ensure the necessary rapid fault clearing. Therefore, it does not satisfy the requirements for an effective ground-fault current path. This definition is crucial for ensuring safety and reliability in electrical installations, where an effective return path is essential for the system's proper operation during fault conditions.

7. What is a possible advantage of solidly grounded systems?

- A. They can operate without any bonding.
- B. They typically provide a lower impedance path to ground.
- C. They allow for higher voltage insulation.
- D. They have less complexity in installation.

Solidly grounded systems provide a lower impedance path to ground because the neutral conductor is directly connected to the earth ground without any intervening impedance. This direct connection minimizes the resistance and reactance in the path to ground, which is crucial for effective fault clearing during ground faults. A low impedance path allows overcurrent protective devices to detect faults more quickly and trip effectively, enhancing the safety and reliability of the electrical system. In the context of electrical systems, having a low impedance path is vital for the operation of protective devices and helps in reducing the potential for damage during fault conditions. This advantage is particularly important in reducing the risk of electric shock and preventing equipment damage, as it facilitates the safe operation of equipment and systems during fault situations.

8. What should be done if soil resistivity is too high at a site?

- A. Reduce the size of the grounding electrode
- B. Use grounding electrodes made of aluminum
- C. Consider electing additional grounding electrodes or utilizing ground-enhancing chemicals
- D. Ignore the resistivity as it does not affect grounding

High soil resistivity can significantly impact the effectiveness of grounding systems, as it creates a higher resistance path for fault current. When the soil resistivity is too high, it can lead to inadequate grounding, which may compromise safety and system reliability. Utilizing additional grounding electrodes or ground-enhancing chemicals is a practical solution to this problem. Additional electrodes can provide multiple paths for fault current to dissipate into the earth, effectively reducing overall resistance. Ground-enhancing chemicals can help to lower the resistivity of the soil, improving electrical conductivity and the performance of the grounding system. This proactive approach ensures that grounding systems function properly, offering sufficient protection against electrical faults and reducing the risk of shock hazards or equipment damage, which are critical considerations in electrical installations.

- 9. What must be done regarding ground detectors in ungrounded AC systems operating at 120 volts and above?
 - A. They should be installed only after the system is tested
 - B. They must be connected as close as practicable to the supply source
 - C. They are not necessary for systems under 1000 volts
 - D. They should only be installed by certified professionals

In ungrounded AC systems operating at 120 volts and above, ground detectors must be connected as close as practicable to the supply source to ensure proper functionality and safety. This placement is crucial because it allows for immediate detection of any ground faults that may occur in the system. By being located near the supply source, the ground detectors can effectively monitor the voltage levels and quickly alert operators to an unplanned ground condition, thereby helping to maintain system integrity and safety. The strategic positioning enhances the reliability of the system by ensuring that ground detection occurs promptly, which is vital in preventing potential overheating, equipment damage, or electrical shocks. Moreover, adhering to this guideline reflects best practices in electrical installations, contributing to both safety and compliance with relevant standards.

- 10. When is an additional grounding connection required at a transformer outside the building?
 - A. Only if it is a dual-fed service
 - B. Always, regardless of the system
 - C. When there is a high-impedance grounded neutral system
 - D. When the transformer supplies the service

An additional grounding connection at a transformer located outside a building is typically required when the transformer supplies the service. This is because the transformer, when it provides power to a building, needs to ensure that any fault current has a clear path to ground to enhance safety and effectively operate protective devices. Grounding in these situations helps to prevent overvoltages during transient, fault, or lightning events by providing a path for excess current to safely dissipate into the earth. Additionally, it ensures that the system remains stable and reduces the risk of electrical shock to personnel. While other scenarios may involve additional grounding requirements based on specific conditions, the essential need is dictated by the role the transformer plays in supplying power to the service. This establishes a critical link for the safety and operational integrity of the electrical system in the building.