

# ARRT Vascular Interventional Practice Exam (Sample)

## Study Guide



**Everything you need from our exam experts!**

**Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.**

**ALL RIGHTS RESERVED.**

**No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.**

**Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.**

**SAMPLE**

# Table of Contents

|                                    |           |
|------------------------------------|-----------|
| <b>Copyright</b> .....             | <b>1</b>  |
| <b>Table of Contents</b> .....     | <b>2</b>  |
| <b>Introduction</b> .....          | <b>3</b>  |
| <b>How to Use This Guide</b> ..... | <b>4</b>  |
| <b>Questions</b> .....             | <b>5</b>  |
| <b>Answers</b> .....               | <b>8</b>  |
| <b>Explanations</b> .....          | <b>10</b> |
| <b>Next Steps</b> .....            | <b>16</b> |

SAMPLE

# Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

# How to Use This Guide

**This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:**

## 1. Start with a Diagnostic Review

**Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.**

## 2. Study in Short, Focused Sessions

**Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.**

## 3. Learn from the Explanations

**After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.**

## 4. Track Your Progress

**Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.**

## 5. Simulate the Real Exam

**Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.**

## 6. Repeat and Review

**Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.**

**There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!**

## **Questions**

SAMPLE

- 1. After colorectal stent placement, stent obstruction is reported in approximately what percentage of cases with stents placed for palliation?**
  - A. 2%**
  - B. 8%**
  - C. 12%**
  - D. 20%**
  
- 2. What is an indication for pulmonary angiography?**
  - A. Suspected pulmonary embolus**
  - B. Compromised renal function**
  - C. Coagulopathy**
  - D. Previous history of contrast reaction**
  
- 3. What type of catheter is typically used for long-term intravenous therapy?**
  - A. Hickman Catheter**
  - B. Short-term Catheter**
  - C. Pigtail Catheter**
  - D. Peripheral Catheter**
  
- 4. What type of catheter is a Hickman catheter considered?**
  - A. Short-term Catheter**
  - B. Long-term Catheter**
  - C. Embolic Catheter**
  - D. Filtering Catheter**
  
- 5. Which of the following is NOT recommended for temporary access in hemodialysis?**
  - A. Subclavian vein**
  - B. External jugular vein**
  - C. Femoral vein**
  - D. Internal jugular vein**

**6. Which of the following is a contraindication for lower extremity angiography?**

- A. Thrombocytopenia**
- B. Embolism**
- C. Tumor**
- D. Trauma**

**7. Positioning of the legs is an important consideration during runoff angiograms. The legs should be positioned:**

- A. Close together held with tight straps.**
- B. Close together and stationary without tight straps.**
- C. Apart and stationary with tight straps.**
- D. Apart and stationary without tight straps.**

**8. Which of the following is an indication for pulmonary arterial thrombolysis?**

- A. Severe, uncontrolled hypertension**
- B. Active internal bleeding**
- C. Shock or other signs of systemic hypoperfusion caused by pulmonary embolism**
- D. Known bleeding diathesis**

**9. What is the length of the flexible portion of a fixed core guidewire?**

- A. 10-15 mm**
- B. 10-20 mm**
- C. 3-10 mm**
- D. 3-10 cm**

**10. What is the optimal catheter size for abdominal aortography?**

- A. 2-French**
- B. 4 or 5-French**
- C. 6-French**
- D. 8-French**

## **Answers**

SAMPLE

1. C
2. A
3. A
4. B
5. A
6. A
7. B
8. C
9. D
10. B

SAMPLE

## **Explanations**

SAMPLE

**1. After colorectal stent placement, stent obstruction is reported in approximately what percentage of cases with stents placed for palliation?**

- A. 2%**
- B. 8%**
- C. 12%**
- D. 20%**

Stent obstruction after colorectal stent placement, particularly for palliation, is observed in a significant percentage of cases. When stents are used in this context, the incidence of obstruction has been documented around 12%. This rate is a critical consideration for clinicians, as it underscores the necessity for ongoing patient monitoring and potential interventions following stent placement. Understanding that a number of factors can contribute to stent obstruction, such as tumor growth or changes in the fluid dynamics of the bowel lumen, informs both clinical practice and patient management strategies. This statistic is important for healthcare providers when they are discussing the expectations and potential complications with patients undergoing palliative treatment options. While other percentage options might suggest lower obstruction rates, the evidence supports that a 12% incidence is reflective of real-world outcomes in this patient population.

**2. What is an indication for pulmonary angiography?**

- A. Suspected pulmonary embolus**
- B. Compromised renal function**
- C. Coagulopathy**
- D. Previous history of contrast reaction**

An indication for pulmonary angiography is the suspicion of a pulmonary embolus. This imaging procedure is specifically utilized to visualize the blood vessels in the lungs to detect blockages caused by emboli, which are typically blood clots that have traveled from other parts of the body, such as the legs. The prompt diagnosis of a pulmonary embolism is critical, as it can be a life-threatening condition. By performing a pulmonary angiography, healthcare providers can assess the extent of any blockage and decide on the appropriate treatment options. The other options listed are factors that may complicate the procedure or influence the decision to conduct angiography, but they do not serve as direct indications for the procedure itself. Compromised renal function poses a risk during contrast administration, coagulopathy presents a bleeding risk during the procedure, and a previous history of contrast reaction suggests a need for caution or alternative imaging techniques, but none of these are direct indications for performing a pulmonary angiography.

**3. What type of catheter is typically used for long-term intravenous therapy?**

- A. Hickman Catheter**
- B. Short-term Catheter**
- C. Pigtail Catheter**
- D. Peripheral Catheter**

The Hickman catheter is specifically designed for long-term intravenous therapy. It is a type of central venous catheter that is inserted into a major vein, usually the subclavian or internal jugular vein, and has a dual-lumen feature for administering medications, fluids, or drawing blood. Its construction allows it to remain in place for extended periods, ranging from weeks to months, which is ideal for patients who require continuous or intermittent access for chemotherapy, hydration, or nutrition. In contrast, the other types of catheters listed are not typically suited for long-term use. Short-term catheters are generally designed for temporary access and typically remain in place for less than a week. Pigtail catheters are often used for drainage purposes in specific situations, such as abscesses or to manage fluid collections, not for long-term intravenous therapy. Peripheral catheters, while commonly used for intravenous access, are typically suitable for short-term use as well and are often placed in smaller peripheral veins, which limits their duration and suitability for longer treatments.

**4. What type of catheter is a Hickman catheter considered?**

- A. Short-term Catheter**
- B. Long-term Catheter**
- C. Embolic Catheter**
- D. Filtering Catheter**

A Hickman catheter is classified as a long-term catheter due to its design and intended use in medical settings. It is typically used for patients requiring frequent access to the venous system over an extended period, such as for chemotherapy, long-term IV medications, or frequent blood draws. The Hickman catheter is tunneled under the skin and exits through a small incision, which helps minimize the risk of infection and allows for more stable placement than a non-tunneled catheter. Its construction is robust, accommodating the continuous use and associated demands of long-term therapy, which differentiates it from short-term catheters that are generally used for immediate or temporary needs. This distinction is crucial in clinical practice, as the choice between long-term and short-term catheters significantly affects patient care, including considerations regarding durability, infection risks, and the duration of use necessary for various treatments.

**5. Which of the following is NOT recommended for temporary access in hemodialysis?**

- A. Subclavian vein**
- B. External jugular vein**
- C. Femoral vein**
- D. Internal jugular vein**

The subclavian vein is not recommended for temporary access in hemodialysis primarily due to the risk of complications associated with this site. Although it can be technically more accessible and offers some benefits in terms of flow, the subclavian vein has several significant drawbacks. One of the key concerns is the higher chance of complications, such as pneumothorax, which occurs when the pleural space is inadvertently punctured during catheter placement. Additionally, using the subclavian vein can lead to long-term complications, such as venous occlusion or stenosis, which can further complicate future dialysis access. In contrast, the external jugular, femoral, and internal jugular veins are more commonly used for temporary hemodialysis access. These sites pose fewer risks for immediate complications and are generally more straightforward to cannulate. The internal jugular vein, in particular, is often preferred for its relatively straight course and direct access to the central venous system, which allows for better blood flow during dialysis procedures. By understanding the risks associated with each site, particularly for temporary dialysis access, practitioners can make more informed decisions to enhance patient safety and care.

**6. Which of the following is a contraindication for lower extremity angiography?**

- A. Thrombocytopenia**
- B. Embolism**
- C. Tumor**
- D. Trauma**

Thrombocytopenia is a hematological condition characterized by an abnormally low platelet count, which can lead to increased bleeding risk during invasive procedures such as angiography. In lower extremity angiography, the procedure typically involves catheterization and potential manipulation of blood vessels, which can pose significant risks given that platelets are crucial for normal clotting processes. If a patient has thrombocytopenia, even minor bleeding events could lead to serious complications, making this condition a significant contraindication for the procedure. While embolism may indicate vascular occlusion or may be a reason for needing the procedure, it does not disqualify the patient from undergoing angiography. Similarly, tumors may warrant imaging for diagnostic or treatment planning purposes, and trauma does not inherently contraindicate the procedure, as angiography can be performed to assess vascular integrity after an injury. Thus, thrombocytopenia stands out as a distinct contraindication due to its direct impact on the safety of the angiographic procedure.

**7. Positioning of the legs is an important consideration during runoff angiograms. The legs should be positioned:**

- A. Close together held with tight straps.**
- B. Close together and stationary without tight straps.**
- C. Apart and stationary with tight straps.**
- D. Apart and stationary without tight straps.**

In runoff angiograms, proper positioning of the legs is crucial for obtaining clear and accurate images of the lower extremity vessels. When the legs are positioned close together and stationary without tight straps, it allows for a more natural alignment of the vascular anatomy and reduces the risk of movement artifacts during image acquisition. This positioning also facilitates better access to the inguinal region and ensures that the arteries and veins are adequately visualized without obstruction. Keeping the legs together, yet stationary, helps maintain a consistent distance between the imaging device and the area of interest, which is vital for the quality of the diagnostic images. Additionally, avoiding tight straps prevents any compression of vessels that could lead to compromised blood flow or distortion of vascular structures, enhancing the diagnostic efficacy of the angiogram. On the other hand, other positioning options, such as using tight straps or keeping the legs apart, can lead to suboptimal imaging conditions. Tight straps may impede circulation or create artifacts, while positioning the legs apart could alter the alignment of key anatomical structures, complicating the interpretation of the angiogram. Thus, the chosen positioning of the legs is essential in achieving high-quality imaging results in vascular interventions.

**8. Which of the following is an indication for pulmonary arterial thrombolysis?**

- A. Severe, uncontrolled hypertension**
- B. Active internal bleeding**
- C. Shock or other signs of systemic hypoperfusion caused by pulmonary embolism**
- D. Known bleeding diathesis**

Pulmonary arterial thrombolysis is a therapeutic intervention primarily indicated for the treatment of pulmonary embolism, particularly in cases where the patient is experiencing shock or other signs of systemic hypoperfusion. This condition arises when a blood clot obstructs the pulmonary arteries, thereby disrupting normal blood flow and oxygenation, which can lead to a life-threatening situation. In the context of pulmonary embolism, systemic hypoperfusion indicates that vital organs are not receiving adequate blood supply, which can result in organ dysfunction. Such critical signs necessitate rapid intervention to restore normal circulation and prevent further complications. Administering thrombolytic therapy in these situations can dissolve the clot more effectively and quickly, alleviating the blockage in the pulmonary arteries and restoring blood flow. The other options present conditions where thrombolysis may not be appropriate and could pose additional risks to the patient. These include severe, uncontrolled hypertension or active internal bleeding, which can lead to further complications if thrombolytic agents are used. Additionally, a known bleeding diathesis makes thrombolysis particularly hazardous, as it significantly increases the risk of uncontrollable bleeding. Thus, the correct indication for pulmonary arterial thrombolysis is the acute presentation of shock or systemic hypoperfusion due to pulmonary embolism, which necess

## 9. What is the length of the flexible portion of a fixed core guidewire?

- A. 10-15 mm
- B. 10-20 mm
- C. 3-10 mm
- D. 3-10 cm**

The length of the flexible portion of a fixed core guidewire is typically around 3-10 centimeters. This section is designed to provide the necessary flexibility and maneuverability needed during vascular procedures. A flexible guidewire is crucial for navigating through complex vascular anatomy, allowing the provider to steer through bends and turns in blood vessels while maintaining stability and control. The length of the flexible portion is significant because it allows the guidewire to adapt to the varying radii of curvature within the vascular system without causing trauma to the vessel walls. This flexibility is essential when accessing deep or tortuous vessels. A length of 3-10 centimeters is ideal, as it provides sufficient flexibility while also being long enough to support a range of therapeutic or diagnostic interventions. In contrast, shorter lengths, such as those measured in millimeters, would not provide adequate flexibility and could limit the guidewire's effectiveness in navigating the vascular system. Similarly, options that suggest a range wider than 10 centimeters may lead to challenges in manipulation and might not align with the design of guidewires in use within vascular interventional practices. Thus, the selected answer aligns perfectly with the typical design and application of fixed core guidewires in the field.

## 10. What is the optimal catheter size for abdominal aortography?

- A. 2-French
- B. 4 or 5-French**
- C. 6-French
- D. 8-French

The optimal catheter size for abdominal aortography typically falls within the range of 4 to 5-French. This size offers a balance between adequate lumen size for contrast delivery and the ability to manipulate the catheter within the vascular system without causing excessive trauma or discomfort to the vessel walls. Using a 4 or 5-French catheter allows for effective visualization of the abdominal aorta and its major branches while minimizing potential complications. These catheters provide sufficient flow rates for contrast medium during the procedure, which is crucial for obtaining high-quality images necessary for diagnostic purposes. Additionally, this size allows for compatibility with most vascular interventions and diagnostic imaging techniques commonly employed in interventional radiology. Catheters that are smaller, such as the 2-French, may not provide sufficient flow for effective contrast delivery, which can compromise image quality. On the other hand, larger catheters like 6-French and 8-French introduce increased risk for vascular injury and are generally unnecessary for routine aortography, where a smaller diameter is sufficient to achieve desired results while maintaining patient safety.

# Next Steps

**Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.**

**As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.**

**If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at [hello@examzify.com](mailto:hello@examzify.com).**

**Or visit your dedicated course page for more study tools and resources:**

**<https://arrtvacularinterventional.examzify.com>**

**We wish you the very best on your exam journey. You've got this!**

**SAMPLE**