

ARRL Technician Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. Where should an in-line SWR meter be connected to monitor the standing wave ratio of the station antenna system?**
 - A. Between the antenna and the ground**
 - B. In series with the feed line, between the transmitter and antenna**
 - C. Before the transmitter**
 - D. After the ground system**
- 2. What is a fundamental aspect of RF radiation safety in amateur radio?**
 - A. All equipment must be operated at maximum capacity**
 - B. Operators must be aware of exposure levels**
 - C. Only digital equipment can be used**
 - D. RF exposure does not need to be monitored**
- 3. Which of the following is an important safety precaution to observe when putting up an antenna tower?**
 - A. Wear gloves while handling tools**
 - B. Look for and stay clear of any overhead electrical wires**
 - C. Ensure all team members are wearing reflective vests**
 - D. Use only battery-operated tools**
- 4. Which of the following is true when making a test transmission?**
 - A. Station identification is optional during the test**
 - B. Identification is required at least every five minutes**
 - C. Station identification is required at least every ten minutes during the test and at the end of the test**
 - D. A test does not require identification**
- 5. When must the station licensee make the station and its records available for FCC inspection?**
 - A. At any time upon request by an FCC representative**
 - B. Only during scheduled inspections**
 - C. Once a year**
 - D. During license renewal**

6. What type of radiation are VHF and UHF radio signals classified as?

- A. Ionic radiation**
- B. Non-ionizing radiation**
- C. Gamma radiation**
- D. X-ray radiation**

7. Which of the following is a guideline to use when choosing an operating frequency for calling CQ?

- A. Consult your license class rules**
- B. All of these choices are correct**
- C. Avoid crowded frequencies**
- D. Make sure to use the highest power available**

8. Which formula is used to calculate current in a circuit?

- A. Voltage (E) divided by resistance (R)**
- B. Resistance (R) divided by voltage (E)**
- C. Voltage (E) multiplied by current (I)**
- D. Current (I) multiplied by resistance (R)**

9. What is a recommended way to reduce interference from an amateur transmitter to a nearby telephone?

- A. Reduce the power of the transmitter**
- B. Change the frequency of operation**
- C. Put a RF filter on the telephone**
- D. Use a different type of telephone**

10. What is required in place of on-air station identification when sending signals to a radio control model using amateur frequencies?

- A. A continuous transmission**
- B. A label indicating the licensee's name, call sign and address must be affixed to the transmitter**
- C. An ID card displayed on the model**
- D. A broadcast announcement every hour**

Answers

SAMPLE

- 1. B**
- 2. B**
- 3. B**
- 4. C**
- 5. A**
- 6. B**
- 7. B**
- 8. A**
- 9. C**
- 10. B**

SAMPLE

Explanations

SAMPLE

1. Where should an in-line SWR meter be connected to monitor the standing wave ratio of the station antenna system?

- A. Between the antenna and the ground**
- B. In series with the feed line, between the transmitter and antenna**
- C. Before the transmitter**
- D. After the ground system**

To monitor the standing wave ratio (SWR) of a station antenna system effectively, the in-line SWR meter must be connected in series with the feed line, specifically between the transmitter and the antenna. This positioning allows the meter to accurately measure the ratio of reflected power to forward power as it travels along the feed line. When installed in this manner, the SWR meter can assess how much of the power transmitted by the station is actually radiated by the antenna versus how much is reflected back due to mismatches in impedance along the feed line. An ideal SWR is typically 1:1, meaning that all the transmitted power is being effectively radiated by the antenna, while a higher ratio indicates potential issues with the antenna system, such as poor matching or damage. The other choices do not facilitate accurate SWR measurement. Connecting the meter between the antenna and the ground would not capture the necessary data since it would not measure the signals traveling towards the antenna from the transmitter. Likewise, placing it before the transmitter or after the ground system would not allow the meter to measure the relationship between forward and reflected power in the feed line, which is essential for determining SWR.

2. What is a fundamental aspect of RF radiation safety in amateur radio?

- A. All equipment must be operated at maximum capacity**
- B. Operators must be aware of exposure levels**
- C. Only digital equipment can be used**
- D. RF exposure does not need to be monitored**

Being aware of exposure levels is a fundamental aspect of RF radiation safety in amateur radio because it ensures that operators understand the potential risks associated with radio frequency (RF) radiation. This awareness allows them to take necessary precautions to minimize exposure to themselves and others, especially in situations where RF fields can be strong. Monitoring exposure levels is critical because the quality and type of RF radiation can vary based on frequency, power output, and operational practices. The Federal Communications Commission (FCC) and the American National Standards Institute (ANSI) set regulations and guidelines regarding safe exposure limits for RF radiation. It is the operator's responsibility to be informed about these limits and to evaluate their operating practices, antenna placements, and the potential for exposure to themselves and nearby individuals. This fundamental aspect helps to promote safety, ensuring that as operators communicate and experiment with their amateur radio equipment, they do so responsibly and within safe exposure limits.

3. Which of the following is an important safety precaution to observe when putting up an antenna tower?

- A. Wear gloves while handling tools**
- B. Look for and stay clear of any overhead electrical wires**
- C. Ensure all team members are wearing reflective vests**
- D. Use only battery-operated tools**

Staying clear of any overhead electrical wires is critical for safety when erecting an antenna tower. Overhead power lines pose a significant risk of electrocution or injury if a person or equipment comes into contact with them. It is essential to survey the area before beginning any work on the tower to ensure that all team members are aware of the location of these wires and maintain a safe distance. This precaution helps to prevent accidents that could result from an unnoticed proximity to live electrical lines, which can have serious consequences. While wearing gloves, using reflective vests, and utilizing battery-operated tools are all beneficial safety practices in various contexts, they do not address the immediate and potentially deadly hazards presented by overhead wires. Identifying and avoiding electrical hazards is a top priority in tower construction and maintenance.

4. Which of the following is true when making a test transmission?

- A. Station identification is optional during the test**
- B. Identification is required at least every five minutes**
- C. Station identification is required at least every ten minutes during the test and at the end of the test**
- D. A test does not require identification**

When making a test transmission, station identification is required at least every ten minutes during the test and also at the end of the test. This regulation ensures that operators maintain proper identification and accountability while using the airwaves, which is crucial for both legal compliance and good amateur radio practice. The requirement for identification serves several important purposes. Primarily, it clearly associates the transmission with a licensed operator or station, allowing for accountability and traceability. This helps avoid confusion among operators and aids in identifying the source of any issues that may arise during testing. Furthermore, it promotes good operating habits, reinforcing the importance of regular identification in all amateur radio activities. The specifics surrounding the timeframe—identifying every ten minutes during the test and once again at the conclusion—are part of the Federal Communications Commission (FCC) regulations. Following these guidelines is essential for staying within legal operating parameters while conducting test transmissions.

5. When must the station licensee make the station and its records available for FCC inspection?

- A. At any time upon request by an FCC representative**
- B. Only during scheduled inspections**
- C. Once a year**
- D. During license renewal**

The requirement for the station licensee to make the station and its records available for FCC inspection is dictated by the need for compliance with regulations and oversight. The correct answer indicates that this must happen at any time upon request by an FCC representative. This stipulation enables the FCC to ensure adherence to the rules governing amateur radio operations. The FCC's ability to inspect stations and their records at any time reflects its role in enforcing amateur radio laws, ensuring that operators are maintaining their licenses appropriately, and that frequencies are being used in compliance with legal requirements. This flexibility helps the FCC monitor radio activity and enforce regulations effectively, maintaining order in the airwaves. In contrast, the other options suggest limitations that are not aligned with the rules. The notion of only during scheduled inspections overlooks the emergency need for the FCC to assess compliance at any moment. Similarly, stating that inspections occur once a year or during license renewal would restrict the FCC's oversight capabilities, which is not conducive to an effective regulatory process. The ongoing accessibility for inspections underscores the FCC's mission to promote responsible amateur radio operation.

6. What type of radiation are VHF and UHF radio signals classified as?

- A. Ionic radiation**
- B. Non-ionizing radiation**
- C. Gamma radiation**
- D. X-ray radiation**

VHF (Very High Frequency) and UHF (Ultra High Frequency) radio signals are classified as non-ionizing radiation. This classification is significant because non-ionizing radiation includes electromagnetic waves that do not carry enough energy to ionize atoms or molecules, which means they do not have enough energy to remove tightly bound electrons from their orbit around an atom. This makes non-ionizing radiation, such as radio waves, microwaves, and visible light, generally considered less hazardous than ionizing radiation, which includes types like gamma and X-ray radiation that can cause more serious biological effects due to their higher energy levels. Understanding that VHF and UHF signals are part of the non-ionizing spectrum helps differentiate them from other types of radiation that can cause damage to biological tissues. This classification provides crucial context in areas such as safety standards, as regulations regarding exposure limits vary significantly between non-ionizing and ionizing radiation.

7. Which of the following is a guideline to use when choosing an operating frequency for calling CQ?

- A. Consult your license class rules**
- B. All of these choices are correct**
- C. Avoid crowded frequencies**
- D. Make sure to use the highest power available**

Choosing an operating frequency for calling CQ involves several important guidelines to ensure effective and respectful communication on the air. One key guideline is to consult your license class rules. These rules provide specific frequency allocations and privileges that vary depending on the class of your amateur radio license, which helps you operate within legal and regulatory limits. Additionally, avoiding crowded frequencies is crucial. This practice minimizes interference with other operators who may already be engaged in conversations or activities on specific frequencies. By selecting less crowded channels, you increase the likelihood of making contacts and reduce the chances of causing disruption. Using the highest power available is not a standard guideline for calling CQ. In fact, effective communication is often achieved through properly adjusting your power based on the conditions and distance of communication rather than always using maximum power. In summary, all of these considerations provide a comprehensive approach to selecting a frequency for calling CQ, emphasizing the importance of compliance with regulations, operating etiquette, and effective communication practices.

8. Which formula is used to calculate current in a circuit?

- A. Voltage (E) divided by resistance (R)**
- B. Resistance (R) divided by voltage (E)**
- C. Voltage (E) multiplied by current (I)**
- D. Current (I) multiplied by resistance (R)**

The formula for calculating current in a circuit is derived from Ohm's Law, which states that the current (I) flowing through a conductor between two points is directly proportional to the voltage (E) across the two points and inversely proportional to the resistance (R) of the conductor. This relationship is expressed mathematically as: $I = E / R$. In this formula, current (I) is the result of dividing the voltage (E) by the resistance (R). This means that for a given voltage, if the resistance increases, the current will decrease, and conversely, if the resistance decreases, the current will increase. This concept is fundamental in electronics and electrical engineering as it describes how voltage, current, and resistance interact within a circuit. Understanding this relationship is crucial for technicians when troubleshooting circuits or designing electrical systems. The other options do not represent valid relationships per Ohm's Law and therefore do not yield the correct expression for calculating current.

9. What is a recommended way to reduce interference from an amateur transmitter to a nearby telephone?

- A. Reduce the power of the transmitter**
- B. Change the frequency of operation**
- C. Put a RF filter on the telephone**
- D. Use a different type of telephone**

Using an RF (radio frequency) filter on the telephone is a practical and effective method to mitigate interference from an amateur radio transmitter. RF filters are designed to block or attenuate unwanted radio frequency signals that may be picked up by sensitive electronic devices like telephones. By incorporating an RF filter, you can effectively reduce the impact of stray RF emissions, allowing the telephone to function properly without being disturbed by the signals generated by nearby amateur radio operations. This solution is particularly useful because it directly addresses the interference issue without requiring major changes to either the transmitter's operation or the telephone system itself. It allows for continued use of the existing equipment while enhancing its performance against interference. Reducing the transmitter's power or changing the frequency of operation can be beneficial in some situations, but these adjustments may not always effectively eliminate interference, especially if the interference is severe. Additionally, switching to a different type of telephone may not address the root cause of the interference issue, as many modern devices can still be susceptible to RF noise. Using an RF filter specifically targets the interference problem, making it the most practical recommendation.

10. What is required in place of on-air station identification when sending signals to a radio control model using amateur frequencies?

- A. A continuous transmission**
- B. A label indicating the licensee's name, call sign and address must be affixed to the transmitter**
- C. An ID card displayed on the model**
- D. A broadcast announcement every hour**

When sending signals to a radio control model using amateur frequencies, the requirement is to have a label affixed to the transmitter that indicates the licensee's name, call sign, and address. This is necessary because traditional on-air station identification, which typically involves announcing your call sign during a transmission, is not practical for remote-controlled models. Instead, the label provides a means of identifying the operator of the transmission while fulfilling regulatory requirements. The other options do not align with the regulations governing amateur radio operations. Continuous transmissions and broadcast announcements are not suitable alternatives to identification, as they could lead to interference and are not mandated in this specific circumstance. An ID card displayed on the model does not provide the relevant information directly to anyone observing the operation of the model, making it ineffective compared to a label on the transmitter. Thus, affixing a clear, accessible label is the appropriate method to ensure compliance with regulatory standards for identification while operating a radio-controlled model.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://arrltechnician.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE