

Arizona State University (ASU) BIO320

Fundamentals of Ecology

Exam 3 Practice (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What is the role of albedo in climate systems?**
 - A. It measures the amount of rainfall in a region**
 - B. It reflects solar radiation, affecting temperature**
 - C. It indicates vegetation density**
 - D. It signifies ocean salinity levels**

- 2. Which combination indicates lower species diversity?**
 - A. High richness and low evenness**
 - B. Low richness and low evenness**
 - C. High evenness alone**
 - D. High richness and high evenness**

- 3. What does the Intermediate Disturbance Hypothesis state about levels of disturbance and species diversity?**
 - A. High levels promote diversity**
 - B. Low levels promote diversity**
 - C. Both high and low levels reduce diversity**
 - D. Intermediate levels reduce diversity**

- 4. How is Net Primary Production calculated?**
 - A. Gross Primary Production plus respiratory losses**
 - B. Gross Primary Production minus respiratory losses**
 - C. Net production of consumers minus producer production**
 - D. Total energy consumption minus respiration**

- 5. What does the term "potential ET" signify in desert ecosystems?**
 - A. The maximum rate of water vapor that could be lost**
 - B. The actual measured water loss from soil and plants**
 - C. The average rainfall in that ecosystem**
 - D. The rate of soil erosion**

6. According to ecological principles, higher NPP typically results in what for higher trophic levels?

- A. More individuals**
- B. Fewer individuals**
- C. Less energy availability**
- D. Biodiversity loss**

7. What does NPP stand for in ecological terms?

- A. Net Primary Productivity**
- B. Normal Plant Population**
- C. Nutrient Production Potential**
- D. Natural Photosynthesis Production**

8. What is ecological succession?

- A. The introduction of new species to an ecosystem**
- B. The changes and development of ecosystems over time**
- C. The extinction of species due to habitat loss**
- D. The stabilization of ecosystems after a disturbance**

9. Where do the highest rates of marine net primary productivity typically occur?

- A. In open ocean areas**
- B. In deep-sea trenches**
- C. Along continental margins with nutrient availability**
- D. In polar ice regions**

10. Which of the following terms describes the dependencies in an ecosystem?

- A. Trophic levels**
- B. Food chains**
- C. Food webs**
- D. Nutrient cycles**

Answers

SAMPLE

1. B
2. A
3. C
4. B
5. A
6. A
7. A
8. B
9. C
10. C

SAMPLE

Explanations

SAMPLE

1. What is the role of albedo in climate systems?

- A. It measures the amount of rainfall in a region
- B. It reflects solar radiation, affecting temperature**
- C. It indicates vegetation density
- D. It signifies ocean salinity levels

The role of albedo in climate systems is primarily related to its function of reflecting solar radiation, which has a significant impact on temperature regulation within the Earth's atmosphere. Albedo is defined as the fraction of solar energy reflected back into space by a surface. Different surfaces have varying albedo values; for instance, ice and snow have high albedo, meaning they reflect most of the incoming solar radiation, while darker surfaces like forests or oceans absorb more heat due to their lower albedo. As a result, regions with high albedo can contribute to cooler local temperatures, whereas those with low albedo can exacerbate warming. Changes in land use, such as deforestation or urbanization, can alter the albedo of an area, influencing local microclimates and broader climate patterns. Thus, the correct answer highlights the critical role albedo plays in determining how much solar energy is absorbed versus how much is reflected, ultimately affecting temperature and climate dynamics.

2. Which combination indicates lower species diversity?

- A. High richness and low evenness**
- B. Low richness and low evenness
- C. High evenness alone
- D. High richness and high evenness

To understand why the combination of high richness and low evenness indicates lower species diversity, it's important to clarify the concepts of richness and evenness in the context of ecology. Richness refers to the number of different species present in a given area, while evenness refers to how similarly abundant the various species are within that area. High richness means that there are many different species present, which is a positive aspect of diversity. However, if evenness is low, it suggests that a few species are dominating the community, meaning that while there are many species (high richness), they are not evenly distributed. In this scenario, the community may have a high number of species, but if they are not represented evenly, it undermines the overall diversity because ecological function and resilience depend on not just the presence of various species but also on their relative abundances. A community dominated by a few species may not respond as well to disturbances, have lower functional redundancy, and exhibit reduced ecological resilience. In contrast, combinations with low richness and low evenness or high evenness with no specification of richness would typically suggest poorer overall diversity. High richness and high evenness would indicate a more robust ecosystem as both the number of species and their population sizes are balanced.

3. What does the Intermediate Disturbance Hypothesis state about levels of disturbance and species diversity?

- A. High levels promote diversity
- B. Low levels promote diversity
- C. Both high and low levels reduce diversity**
- D. Intermediate levels reduce diversity

The Intermediate Disturbance Hypothesis posits that moderate levels of disturbance can enhance species diversity within a community. This is because both very high and very low levels of disturbance tend to reduce diversity. High levels of disturbance can frequently eliminate species or limit the establishment of new ones, while low disturbance levels may lead to competitive exclusion, where a few dominant species outcompete others, thus lowering diversity. In contrast, intermediate levels of disturbance create opportunities for a variety of species to coexist—some may be able to return quickly after a disturbance while others benefit from the opened niches. This balance allows for a greater variety of species to thrive, as neither competitive exclusion nor constant disruption dominate the ecosystem. Therefore, understanding the dynamics of disturbance and its impact on species diversity is crucial for comprehending ecological communities.

4. How is Net Primary Production calculated?

- A. Gross Primary Production plus respiratory losses
- B. Gross Primary Production minus respiratory losses**
- C. Net production of consumers minus producer production
- D. Total energy consumption minus respiration

Net Primary Production (NPP) is calculated by taking Gross Primary Production (GPP) and subtracting the amount of energy used by plants during respiration. GPP represents the total amount of organic matter or energy produced by photosynthetic organisms in an ecosystem. However, plants utilize a portion of this energy for their own metabolic processes, which is accounted for as respiratory losses. By subtracting these respiratory losses from GPP, we obtain NPP, which provides a measure of the net amount of energy available for growth and reproduction of the primary producers, as well as energy that can be transferred to higher trophic levels in the ecosystem. This calculation is crucial for understanding energy flow and productivity within ecological systems.

5. What does the term "potential ET" signify in desert ecosystems?

- A. The maximum rate of water vapor that could be lost**
- B. The actual measured water loss from soil and plants**
- C. The average rainfall in that ecosystem**
- D. The rate of soil erosion**

The term "potential ET," or potential evapotranspiration, refers to the maximum rate at which water could be lost from an ecosystem due to the processes of evaporation from the soil and transpiration from plants, under optimal conditions. In desert ecosystems, where water availability is limited, understanding potential ET is crucial for assessing how much moisture could theoretically be lost if water were not a limiting factor. It helps researchers and ecologists evaluate the water balance in these environments and how different plant species might adapt to high rates of potential water loss. In contrast, actual measured water loss is often lower than potential ET due to limitations in water supply and environmental conditions. Average rainfall does not directly relate to potential ET as it indicates precipitation rather than evapotranspiration processes. Soil erosion relates to the physical loss of soil rather than the water loss through evaporation or transpiration, making it unrelated to the concept of potential ET.

6. According to ecological principles, higher NPP typically results in what for higher trophic levels?

- A. More individuals**
- B. Fewer individuals**
- C. Less energy availability**
- D. Biodiversity loss**

Net Primary Production (NPP) refers to the amount of organic matter or biomass produced by plants in an ecosystem that is available for consumption by herbivores and subsequently higher trophic levels. A higher NPP indicates a greater availability of energy and organic material, which directly supports increased populations of organisms at higher trophic levels. When NPP is elevated, it means that there is an abundance of food resources available for herbivores. This increased food supply can support a larger population of herbivores, which in turn can support more predators. The energy transfer efficiency between trophic levels is not perfect, but with a greater biomass produced at the base level, the amount of energy available for herbivores and then for carnivores is also increased. Furthermore, areas with high NPP often include diverse ecosystems, such as rainforests or wetlands, which provide various niches and resources that allow for greater population sizes and diversity among higher trophic level organisms. Thus, an increase in NPP generally correlates with more individuals present at higher trophic levels, allowing for a more dynamic and productive ecosystem.

7. What does NPP stand for in ecological terms?

- A. Net Primary Productivity**
- B. Normal Plant Population**
- C. Nutrient Production Potential**
- D. Natural Photosynthesis Production**

Net Primary Productivity (NPP) refers to the amount of organic material (biomass) produced by primary producers, such as plants, after accounting for the energy they use for respiration. This measure is crucial in ecology because it represents the energy available to the rest of the ecosystem, including herbivores and higher trophic levels. In essence, NPP is an indicator of the productivity of an ecosystem and reflects how much energy is harvested and stored by photosynthetic organisms. Understanding NPP is fundamental in evaluating ecosystem health and productivity, as it can be affected by various factors including climate, nutrient availability, and ecosystem type. Therefore, it serves as a vital metric for ecologists studying energy flow and food web dynamics within different habitats.

8. What is ecological succession?

- A. The introduction of new species to an ecosystem**
- B. The changes and development of ecosystems over time**
- C. The extinction of species due to habitat loss**
- D. The stabilization of ecosystems after a disturbance**

Ecological succession refers to the gradual process of change and development in ecosystems over time. This phenomenon occurs as communities of organisms — ranging from plants to animals — undergo a series of changes that lead to the establishment of a more stable and mature ecosystem. There are two primary types of succession: primary succession, which happens in lifeless areas where soil has not yet formed (such as after a volcanic eruption), and secondary succession, which occurs in areas where a disturbance has destroyed an existing community but left the soil intact (such as after a forest fire). As succession progresses, species composition shifts, new species are introduced, and the overall structure of the ecosystem evolves. This process often enhances biodiversity and can lead to the establishment of a climax community, which is a relatively stable endpoint of succession. Recognizing ecological succession is essential for understanding how ecosystems respond to environmental changes and disturbances over time.

9. Where do the highest rates of marine net primary productivity typically occur?

- A. In open ocean areas**
- B. In deep-sea trenches**
- C. Along continental margins with nutrient availability**
- D. In polar ice regions**

The highest rates of marine net primary productivity typically occur along continental margins with nutrient availability. This includes areas such as upwelling zones where nutrient-rich deep waters are brought to the surface, promoting the growth of phytoplankton. These phytoplankton serve as the foundational producers in marine ecosystems, converting sunlight and inorganic nutrients into organic matter.

Continental margins provide various factors that enhance productivity, such as access to sunlight, shallow waters that allow for photosynthesis, and high levels of nutrients from terrestrial runoff and ocean currents. These locations can support a diverse array of marine life due to their rich nutrient content, which sustains larger food webs. In contrast, open ocean areas generally have lower productivity due to the vast distances between nutrient sources and the limited nutrients available in the deep water. Deep-sea trenches, while unique ecosystems, do not support high primary productivity because of their depth and the lack of sunlight. Polar ice regions have seasonal productivity peaks, but overall their rates are lower compared to the consistently nutrient-rich continental margins.

10. Which of the following terms describes the dependencies in an ecosystem?

- A. Trophic levels**
- B. Food chains**
- C. Food webs**
- D. Nutrient cycles**

The term that best describes the dependencies in an ecosystem is food webs. Food webs illustrate how various organisms are interconnected through multiple feeding relationships. Unlike a simple food chain, which shows a linear path of energy flow from one organism to another, a food web encompasses the intricate network of interactions among different species within an ecosystem. This complexity reflects the reality that most organisms have diverse diets and contribute to various trophic levels, resulting in a web of interdependencies that support ecosystem stability and resilience. This interconnectedness is crucial for understanding ecological interactions, energy transfer, and the overall functioning of an ecosystem. Trophic levels and food chains are important concepts in ecology, but they do not capture the full complexity of species interactions as effectively as food webs do. Nutrient cycles, while also vital to ecosystem health, focus specifically on the recycling of nutrients rather than the interdependencies among organisms.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://asu-bio320exam3.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE