

Arizona State University (ASU) BIO 345 Evolution Exam 2 Practice (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. How does molecular evidence contribute to our understanding of evolution?**
 - A. It shows physical characteristics**
 - B. It provides data on genetic relationships and evolutionary history**
 - C. It focuses on fossil records**
 - D. It identifies evolutionary pressures**

- 2. What reproductive strategy is often observed in eusocial insects like wasps, bees, and ants?**
 - A. Haplodiploidy**
 - B. Parthenogenesis**
 - C. Polyembryony**
 - D. Monosexuality**

- 3. What is metagenomics?**
 - A. Analyzing single-species genomes**
 - B. Sequencing DNA from a single species**
 - C. Sequencing DNA from a group of species in an ecosystem**
 - D. Studying the DNA of extinct species**

- 4. What does the change in allele frequencies over generations illustrate about a population?**
 - A. That the population has reached extinction**
 - B. That the population may be undergoing evolution**
 - C. That the population is stable and unchanging**
 - D. That mutations are rare within the population**

- 5. How do fossils contribute to the understanding of the history of life?**
 - A. They provide a chronological order of current species**
 - B. They give tangible evidence of past organisms and their evolutionary changes**
 - C. They show the geographic distribution of species**
 - D. They indicate the genetic makeup of living organisms**

6. Define analogous structures.

- A. Structures that are similar due to shared ancestry**
- B. Structures that have evolved to serve different functions**
- C. Traits that are similar due to convergent evolution, not common ancestry**
- D. Structures that demonstrate genetic drift outcomes**

7. According to kin selection theory, which boat would be most beneficial to save?

- A. A boat with three siblings**
- B. A boat with one father and two cousins**
- C. A boat with one sister, one half-brother, and three cousins**
- D. A boat with five cousins**

8. What provides the selection pressure maintaining sexual reproduction according to the Red Queen hypothesis?

- A. Penguins adapting to climate changes**
- B. Pathogens evolving to overcome an organism's defenses**
- C. Predators adapting to hunt better**
- D. Resource competition among species**

9. How is evolutionary fitness defined?

- A. Ability to adapt to climate changes**
- B. Success of an organism's ability to survive and reproduce**
- C. Measure of genetic diversity within a population**
- D. Influence of environmental changes on a species**

10. What defines a species in biological terms?

- A. A group of organisms that are reproduced in captivity**
- B. A group of organisms that share a common habitat**
- C. A group capable of interbreeding and producing fertile offspring**
- D. A group with similar physical characteristics**

Answers

SAMPLE

1. B
2. A
3. C
4. B
5. B
6. C
7. C
8. B
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. How does molecular evidence contribute to our understanding of evolution?

- A. It shows physical characteristics
- B. It provides data on genetic relationships and evolutionary history**
- C. It focuses on fossil records
- D. It identifies evolutionary pressures

Molecular evidence plays a crucial role in our understanding of evolution by providing data on genetic relationships and the evolutionary history of organisms. This type of evidence involves analyzing DNA, RNA, and protein sequences to reveal how closely related different species are at a molecular level. For example, by comparing the genetic material of two species, scientists can determine the degree of similarity or divergence between their genomes, which reflects their evolutionary history. Such analyses can lead to the construction of phylogenetic trees, which illustrate the relationships among various species and help to trace their common ancestors. This molecular approach complements other methods of studying evolution, like morphology and fossil evidence, by offering insights that might not be visible through physical characteristics alone. Understanding these genetic connections allows researchers to assess how evolutionary changes occur over time, including insights into speciation and adaptation. Overall, molecular evidence is a powerful tool for reconstructing the evolutionary past and understanding the mechanisms of evolution itself.

2. What reproductive strategy is often observed in eusocial insects like wasps, bees, and ants?

- A. Haplodiploidy**
- B. Parthenogenesis
- C. Polyembryony
- D. Monosexuality

Eusocial insects like wasps, bees, and ants often exhibit a reproductive strategy known as haplodiploidy. In this system, fertilized eggs develop into females (diploid), while unfertilized eggs develop into males (haploid). This unique genetic structure plays a crucial role in the social organization of these insects. In haplodiploidy, female workers are more closely related to their sisters than to their own offspring, leading to an evolutionary advantage for cooperative behaviors among siblings. The high degree of relatedness promotes altruistic behaviors, where worker bees, wasps, or ants sacrifice their own reproduction to support the colony and raise their siblings. This strategy helps maintain the genetic interest of the individuals, ultimately contributing to the success and stability of eusocial societies. Understanding haplodiploidy is fundamental to studying the evolution of social behaviors in these insects, as it illustrates how genetic relationships can shape social structures and reproductive strategies.

3. What is metagenomics?

- A. Analyzing single-species genomes**
- B. Sequencing DNA from a single species**
- C. Sequencing DNA from a group of species in an ecosystem**
- D. Studying the DNA of extinct species**

Metagenomics is a powerful approach in genetics and microbiology that involves sequencing DNA from a group of species found within an ecosystem. This allows researchers to study the collective genetic material from diverse organisms without the need to isolate and culture individual species. The ability to analyze the entire community's genomes provides insights into the roles and interactions of various organisms in an environment, as well as their genetic diversity, functional capabilities, and contributions to ecosystems. The focus of metagenomics is on understanding the complex interactions among multiple species, particularly microorganisms, and how these relationships shape environmental processes, health, and ecosystem functions. By studying the metagenome, scientists can uncover information about microbial ecology that would be difficult or impossible to obtain through traditional methods that require isolation of single species.

4. What does the change in allele frequencies over generations illustrate about a population?

- A. That the population has reached extinction**
- B. That the population may be undergoing evolution**
- C. That the population is stable and unchanging**
- D. That mutations are rare within the population**

The change in allele frequencies over generations serves as a key indicator of evolutionary processes occurring within a population. When alleles (gene variants) shift in frequency over time, it suggests that certain traits are being favored or disfavored due to factors such as natural selection, genetic drift, migration, or mutation. This dynamic indicates that the population is not static; rather, it is adapting to its environment or experiencing changes that influence its genetic makeup. Evolution, by definition, involves these shifts in allele frequency, pointing to changes in the genetic structure of the population. Thus, when observing alterations in allele frequencies, it can be concluded that the population may indeed be undergoing evolution, reflecting ongoing biological processes that enable organisms to adapt over time.

5. How do fossils contribute to the understanding of the history of life?

- A. They provide a chronological order of current species
- B. They give tangible evidence of past organisms and their evolutionary changes**
- C. They show the geographic distribution of species
- D. They indicate the genetic makeup of living organisms

Fossils are crucial to understanding the history of life because they represent the remains or traces of ancient organisms, providing direct evidence of what existed in the past. By studying fossils, scientists can observe the physical attributes of these organisms, their structures, and how they may have changed over time through evolutionary processes. This evidence allows researchers to reconstruct ancient ecosystems and track how species have evolved, adapted, or gone extinct in response to environmental changes. The information gathered from fossils forms a historical record that showcases the gradual changes in morphology and behavior, illustrating the pathways of evolution. It also helps identify transitional species that exhibit characteristics of both ancestral and more derived forms, enhancing our understanding of how complex life has developed over geological time. Thus, the role of fossils in providing tangible evidence of evolutionary changes makes them indispensable to the study of life's history.

6. Define analogous structures.

- A. Structures that are similar due to shared ancestry
- B. Structures that have evolved to serve different functions
- C. Traits that are similar due to convergent evolution, not common ancestry**
- D. Structures that demonstrate genetic drift outcomes

Analogous structures are traits that are similar due to convergent evolution, rather than originating from a shared ancestry. This occurs when different species evolve similar traits or features independently, often as adaptations to similar environmental challenges or ecological niches. For example, the wings of bats and insects serve the same function—flight—but they evolved under different evolutionary pathways and do not share a common ancestral lineage that includes wings. This distinction is crucial in evolutionary biology because it highlights how different organisms can develop similar solutions to similar problems, despite their disparate backgrounds. In contrast to analogies, homologous structures arise from common ancestry, which emphasizes different evolutionary paths taken by those with shared evolutionary histories. Recognizing this difference is important for understanding the mechanisms of evolution and the relationships among species.

7. According to kin selection theory, which boat would be most beneficial to save?

- A. A boat with three siblings**
- B. A boat with one father and two cousins**
- C. A boat with one sister, one half-brother, and three cousins**
- D. A boat with five cousins**

In the context of kin selection theory, the primary focus is on the reproductive success of individuals related by blood ties. This theory suggests that individuals can increase their own genetic contribution to future generations by helping relatives survive and reproduce, thereby indirectly passing on similar genes. Choosing the scenario with one sister, one half-brother, and three cousins is optimal because of the genetic relatedness within this group. Siblings share an average of 50% of their genes, half-siblings share about 25%, and cousins share around 12.5%. In this case, the individuals in the chosen boat are a mixture of closer and more distant relatives. The sister and half-brother provide a higher relatedness factor to the individual compared to the other options. The presence of three cousins adds some genetic relatedness but is less impactful than the direct sibling relationships. This combination of both closer (sister and half-brother) and relatively close (cousins) relationships maximizes the potential for genetic success, which is the key principle of kin selection. Thus, from the perspective of maximizing inclusive fitness, this choice represents the most advantageous option for saving.

8. What provides the selection pressure maintaining sexual reproduction according to the Red Queen hypothesis?

- A. Penguins adapting to climate changes**
- B. Pathogens evolving to overcome an organism's defenses**
- C. Predators adapting to hunt better**
- D. Resource competition among species**

The Red Queen hypothesis posits that sexual reproduction is maintained as an adaptive strategy in response to the constant evolutionary changes in the environment, particularly due to the pressures exerted by pathogens. According to this hypothesis, as organisms evolve new defenses to combat diseases or parasites, those pathogens simultaneously adapt to overcome these defenses. This ongoing "arms race" creates a selection pressure that favors sexual reproduction because it promotes genetic variability among offspring, allowing populations to better withstand the evolving threats from these pathogens. In essence, sexual reproduction increases genetic diversity, which in turn enhances the chances that some offspring will possess traits that provide resistance to the ever-evolving pathogens. This ensures that the population, as a whole, remains resilient against diseases, making the mechanism of sexual reproduction a crucial evolutionary strategy in environments where pathogens are a significant threat. Thus, the selection pressure from pathogens is central to the rationale behind the maintenance of sexual reproduction as suggested by the Red Queen hypothesis.

9. How is evolutionary fitness defined?

- A. Ability to adapt to climate changes
- B. Success of an organism's ability to survive and reproduce**
- C. Measure of genetic diversity within a population
- D. Influence of environmental changes on a species

Evolutionary fitness is defined as the success of an organism's ability to survive and reproduce in its environment. This concept encompasses not just the survival of an individual but also how well it can pass its genes to the next generation. Fitness is often measured in terms of the number of offspring an organism produces that survive to reproduce themselves, which directly relates to the propagation of its genetic material in future generations. The emphasis on survival and reproductive success highlights that it's not merely about surviving in a given environment; it's about contributing to the gene pool. Consequently, organisms that are more fit are those whose traits allow them to not only survive but also reproduce effectively, ensuring their genetic legacy continues. This measure of fitness is foundational in understanding natural selection, where advantageous traits become more common in a population because they enhance reproductive success. In contrast, options that focus solely on adaptability to climate, genetic diversity, or the influence of environmental changes, while relevant to evolution as a whole, do not capture the essence of evolutionary fitness as clearly as the definition centered on survival and reproductive success does.

10. What defines a species in biological terms?

- A. A group of organisms that are reproduced in captivity
- B. A group of organisms that share a common habitat
- C. A group capable of interbreeding and producing fertile offspring**
- D. A group with similar physical characteristics

A species is defined biologically as a group of organisms capable of interbreeding and producing fertile offspring. This concept emphasizes the importance of reproductive isolation, which plays a critical role in maintaining the integrity of a species. When members of a species can mate and produce viable offspring, it indicates a shared gene pool and genetic cohesion that defines their identity as a distinct group. The ability to produce fertile offspring ensures that the genetic traits of the species are passed on to subsequent generations, thereby maintaining the lineage over time. This reproductive criterion also helps differentiate one species from another, especially in cases where physical characteristics might overlap or vary considerably. In contrast, options focused solely on reproduction in captivity, ecological habitats, or physical characteristics do not encapsulate the full biological definition of a species. Reproductive capabilities and the potential for offspring viability are essential for understanding speciation, diversification, and the relationships between different organisms in an evolutionary context.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://asu-bio345exam2.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE