

Apprentice Lineman General Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What alternate name is given to the Ruling Span in electrical distribution?**
 - A. Standard Span**
 - B. Equivalent Span**
 - C. Calculated Span**
 - D. Design Span**

- 2. To which bushing is the bridging reactor in a voltage step regulator attached?**
 - A. Supply bushing**
 - B. Load bushing**
 - C. Control bushing**
 - D. Neutral bushing**

- 3. Which of the following is NOT one of the six basic machine elements?**
 - A. Screw**
 - B. Pulley**
 - C. Crank**
 - D. Lever**

- 4. What component is typically required for grounding in a single phase system?**
 - A. Neutral wire**
 - B. Ground rod**
 - C. Ground wire**
 - D. Bonded connection**

- 5. What type of current is typically used in residential electrical systems?**
 - A. Direct current (DC)**
 - B. Alternating current (AC)**
 - C. Pulsating current**
 - D. Variable current**

6. What is the final step in taking an energized circuit out of service?

- A. Connect the ground**
- B. Re-test the tester on a known energized line**
- C. Ensure all customers are notified**
- D. Disconnect the primary power source**

7. What is the resistance of 1000 feet of #10 copper wire?

- A. 10 Ohms**
- B. 5 Ohms**
- C. 1 Ohm**
- D. 0.1 Ohm**

8. Which type of capacitance aids in improving voltage levels in a circuit?

- A. Negative capacitance**
- B. Dynamic capacitance**
- C. Static capacitance**
- D. Leading capacitance**

9. What type of fault occurs when there is contact between two phases in an overhead line?

- A. Open circuit**
- B. Cross circuit**
- C. Short circuit**
- D. Ground fault**

10. In a voltage regulator, which winding is connected to the source voltage?

- A. Induced winding**
- B. Shunt winding**
- C. Regulating winding**
- D. Source winding**

Answers

SAMPLE

1. B
2. B
3. C
4. C
5. B
6. B
7. C
8. D
9. B
10. D

SAMPLE

Explanations

SAMPLE

1. What alternate name is given to the Ruling Span in electrical distribution?

- A. Standard Span**
- B. Equivalent Span**
- C. Calculated Span**
- D. Design Span**

The Ruling Span, which is a critical concept in electrical distribution, is often referred to as the Equivalent Span. This term emphasizes the idea that the Ruling Span represents an average span length that can be used to calculate various parameters for the electrical distribution system, such as sag and tension in overhead lines. The use of "Equivalent" indicates that this span can be utilized interchangeably with actual span lengths of conductors to simplify calculations and maintain system reliability. By employing the Equivalent Span, engineers can apply general formulas for line characteristics without needing to consider each individual span's specific variations, leading to a more standardized and efficient design approach. This terminology is integral to understanding how various spans interact and contribute to overall system performance, particularly in terms of structural integrity and electrical efficiency in distribution networks. Other options may contain terms that reflect different aspects or calculations related to span but do not capture the specific concept of equivalence that the term "Ruling Span" entails.

2. To which bushing is the bridging reactor in a voltage step regulator attached?

- A. Supply bushing**
- B. Load bushing**
- C. Control bushing**
- D. Neutral bushing**

The bridging reactor in a voltage step regulator is attached to the load bushing. This is because the primary function of a bridging reactor is to limit inrush currents and to ensure proper voltage regulation on the load side of the system. By connecting the reactor to the load bushing, it helps stabilize the voltage delivered to the load, thereby reducing the risk of voltage fluctuations that can occur when switching occurs in the regulator. In a voltage step regulator, the load bushing is the point where the controlled voltage is delivered to the end-user or the system that requires regulated voltage. By placing the bridging reactor here, it ensures that the main objective of the regulator—providing a stable voltage to the load—is achieved effectively. The other bushings serve different purposes: the supply bushing connects to the incoming power source, the control bushing is related to the regulator's control system, and the neutral bushing generally serves a grounding or balancing function. Thus, it is specifically the connection to the load bushing that is crucial for the operation and effectiveness of the bridging reactor in maintaining the quality of the electrical supply to the load.

3. Which of the following is NOT one of the six basic machine elements?

- A. Screw**
- B. Pulley**
- C. Crank**
- D. Lever**

The six basic machine elements are fundamental components that serve as the building blocks for more complex machines. These elements generally include items like screws, pulleys, levers, and others that play a critical role in mechanical systems by providing specific mechanical advantages. The correct answer identifies "crank" as not being one of the six basic machine elements. While a crank certainly serves an important function in various machines—converting rotary motion into linear motion—it is not classified as one of the core machine elements like screws, pulleys, or levers, which are foundational in understanding simple machines. The other options, such as screw, pulley, and lever, are indeed recognized as basic machine elements because they directly demonstrate key principles of mechanics, such as leverage and the ability to change the direction or magnitude of force. These elements are essential for understanding mechanical systems and are taught as fundamental concepts in engineering and mechanics.

4. What component is typically required for grounding in a single phase system?

- A. Neutral wire**
- B. Ground rod**
- C. Ground wire**
- D. Bonded connection**

In a single-phase electrical system, a ground wire is typically required for grounding. The ground wire serves as a safety measure, providing a path for electrical faults to safely dissipate into the ground, thus preventing shock hazards and damage to electrical equipment. The ground wire is connected to various components of the electrical installation to ensure that any fault current can be diverted away from users and sensitive equipment. This is particularly important in residential and commercial wiring systems, where overcurrent protection devices, like circuit breakers, rely on the grounding system to function correctly. By ensuring that the ground wire is properly connected and integrated into the system, electrical safety is enhanced, reducing the risk of injury and fire due to electrical faults. While other components like the neutral wire, ground rod, and bonded connections play roles in grounding and system stabilization, the ground wire is specifically critical for establishing a direct connection to the ground, allowing for effective fault current management.

5. What type of current is typically used in residential electrical systems?

- A. Direct current (DC)**
- B. Alternating current (AC)**
- C. Pulsating current**
- D. Variable current**

In residential electrical systems, alternating current (AC) is the standard form of electricity supplied to homes. This type of current alternates direction periodically, which allows for the efficient transmission of electricity over long distances. AC is preferred for residential use primarily because it can be easily transformed to different voltages, facilitating its distribution from power plants to neighborhoods and individual homes. Additionally, most household appliances, lighting, and heating systems are designed to operate using AC. This widespread compatibility underscores AC's role as the backbone of residential power supply. In contrast, direct current (DC) is typically used in specific applications such as batteries and some electronic devices, but it's not the standard for home electrical systems. Pulsating current and variable current are not standard definitions in the context of residential wiring; AC systems consistently provide a stable flow of electricity that is safe and efficient for household use.

6. What is the final step in taking an energized circuit out of service?

- A. Connect the ground**
- B. Re-test the tester on a known energized line**
- C. Ensure all customers are notified**
- D. Disconnect the primary power source**

The final step in taking an energized circuit out of service is to connect the ground. This action ensures that any potential electrical energy remaining in the line is safely dissipated, preventing accidental energization and protecting both the workers and the equipment. Connecting the ground provides a path for any stray electrical current to flow safely to the earth, significantly reducing the risk of electrical shock or arc flash during maintenance activities. While re-testing the tester on a known energized line is an important step in verifying the functionality of testing equipment, it is not the conclusion of the process of taking an energized circuit out of service. Ensuring all customers are notified is a crucial safety and operational consideration but does not directly relate to the physical disconnection and grounding of the circuit itself. Disconnecting the primary power source is a necessary step when taking the circuit out of service, but it occurs prior to connecting the ground to ensure safety once the circuit is confirmed de-energized. Thus, the best practice and final step in the process is to connect the ground.

7. What is the resistance of 1000 feet of #10 copper wire?

- A. 10 Ohms
- B. 5 Ohms
- C. 1 Ohm**
- D. 0.1 Ohm

To determine the resistance of 1000 feet of #10 copper wire, it's important to know the resistivity of copper and how the wire gauge relates to resistance. The resistance of a conductor can be calculated using the formula:
$$R = \rho \frac{L}{A}$$
 where R is resistance, ρ (rho) is resistivity, L is the length of the wire, and A is the cross-sectional area of the wire. For #10 copper wire, the resistance is typically around 1.24 ohms per 1000 feet. In practical use, this value can be approximated to 1 ohm for ease of calculations. Given that the length is specified as 1000 feet, it directly correlates to the standard resistance measurement for this specific gauge of wire. Therefore, selecting 1 ohm indicates an understanding of the resistance value associated with this copper gauge, confirming that the correct answer is indeed 1 ohm.

8. Which type of capacitance aids in improving voltage levels in a circuit?

- A. Negative capacitance
- B. Dynamic capacitance
- C. Static capacitance
- D. Leading capacitance**

Leading capacitance is a term that refers to capacitive reactance which can help improve voltage levels in an AC circuit. Capacitors are used to counteract the effects of inductance in a circuit, which can cause a lagging power factor. By adding leading capacitance, the circuit achieves a more balanced power factor, effectively raising the voltage levels. This technique is especially valuable in power transmission and distribution systems to maintain voltage stability and efficiency, as it provides reactive power support. In contrast, negative capacitance and dynamic capacitance don't apply as effectively in this context. Negative capacitance involves complex and often unstable conditions that can complicate voltage regulation. Static capacitance generally refers to the presence of fixed capacitors that do not alter their capacitance with voltage changes. Therefore, while static capacitance has its uses, it doesn't specifically refer to the action of improving voltage levels like leading capacitance does.

9. What type of fault occurs when there is contact between two phases in an overhead line?

- A. Open circuit**
- B. Cross circuit**
- C. Short circuit**
- D. Ground fault**

The correct answer is that a fault that occurs when there is contact between two phases in an overhead line is known as a cross circuit. This type of fault typically results in a significant surge of current due to the direct connection between the two phases, which can lead to equipment damage and safety hazards. In an overhead line system, when two phases come into contact, the electrical current finds an unintended path between the two conductors, effectively causing a short circuit condition between them. This can occur due to various reasons, such as equipment failure, weather-related impacts (like wind or ice), or physical damage to the line. Such faults need to be identified and cleared promptly to avoid extensive damage. In contrast, other types of faults include open circuits, which involve a break in the electrical path, and ground faults, which occur when there's an unintended connection between a phase and the ground. These situations generally have different implications for operation and safety compared to a cross circuit situation. Identifying and understanding these variations is crucial for linemen to manage and respond to faults effectively.

10. In a voltage regulator, which winding is connected to the source voltage?

- A. Induced winding**
- B. Shunt winding**
- C. Regulating winding**
- D. Source winding**

In a voltage regulator, the source winding is the one that is directly connected to the source voltage. This winding receives the input voltage and plays a crucial role in the voltage regulation process. By being connected to the power source, it allows the regulator to accurately sense the voltage level and make adjustments as necessary to maintain consistent output voltage. The other windings mentioned have different purposes. The induced winding typically generates a voltage based on the magnetic field changes in the core, while the shunt winding is connected in parallel with the load to provide feedback for voltage adjustment. The regulating winding is responsible for adjusting the output voltage of the regulator based on the feedback it receives. However, it does not connect directly to the source voltage. Therefore, identifying the source winding as the one connected to the source voltage is critical for understanding how voltage regulators maintain stable output voltages.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://apprenticelineman.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE