

AMT Airframe Oral and Practical (O&P) Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Why is a soft flame especially desired when welding aluminum?**
 - A. It allows for faster welding**
 - B. To avoid creating holes in the metal**
 - C. It produces a cleaner finish**
 - D. It is easier to control**
- 2. What is a common result of using insufficient gluing pressure when making a wood joint?**
 - A. Weak joint due to excessive glue use**
 - B. Thick glue lines indicating a weak joint**
 - C. Delamination of the wood layers**
 - D. Misalignment of the wood pieces**
- 3. What should the pressure of acetylene gas be when actually welding?**
 - A. 10 psi**
 - B. 5 psi**
 - C. 15 psi**
 - D. 20 psi**
- 4. What can be a consequence of using the wrong type of fire extinguisher on a specific fire?**
 - A. It can extinguish the fire more effectively**
 - B. It can cause the fire to escalate**
 - C. It can increase safety**
 - D. It can produce toxic gas**
- 5. What is the effect of humidity on the drying of dope used in aircraft fabric covering?**
 - A. It accelerates the drying process**
 - B. It has no effect**
 - C. It causes blushing and affects the finish**
 - D. It enhances the finish gloss**

6. What problems are associated with electrically heated windshields?

- A. Delamination and arcing**
- B. Scratches and discoloration**
- C. Both A and B**
- D. Increased thermal efficiency**

7. What are the main components in a vapor cycle cooling system?

- A. The compressor, evaporator and expansion valve**
- B. The evaporator, condenser, and heater**
- C. The compressor, condenser, expansion valve and evaporator**
- D. The expansion valve, compressor, and control unit**

8. If the original rib stitch spacing cannot be determined when re-covering an aircraft, what rib stitching should be used?

- A. Use the rib stitching spacing chart in advisory circular 43.13-1B**
- B. Use any standard rib stitching method from the manufacturer's guidelines**
- C. Use the average spacing from previous coverings**
- D. Consult with the aircraft manufacturer for specific instructions**

9. What is typically used to clean deicer boots?

- A. Acidic cleaning agents**
- B. High-pressure water spray**
- C. Mild soap and water solution**
- D. Specialized solvent cleaners**

10. What is the purpose of drain grommets in aircraft fabric?

- A. To reinforce wings against damage**
- B. To allow moisture to escape and provide ventilation**
- C. To secure the fabric to the frame**
- D. To enhance aerodynamic performance**

Answers

SAMPLE

- 1. B**
- 2. B**
- 3. B**
- 4. B**
- 5. C**
- 6. C**
- 7. C**
- 8. A**
- 9. C**
- 10. B**

SAMPLE

Explanations

SAMPLE

1. Why is a soft flame especially desired when welding aluminum?

- A. It allows for faster welding
- B. To avoid creating holes in the metal**
- C. It produces a cleaner finish
- D. It is easier to control

A soft flame is especially desired when welding aluminum primarily because it helps to avoid creating holes in the metal. Aluminum has a relatively low melting point compared to many other metals, and it can easily be overheated. When the flame is too aggressive or hard, it can rapidly heat the aluminum and lead to excessive melting, which can cause holes or unwanted burns in the material. Using a soft flame provides a gentler heat application, allowing for better temperature control. This is crucial because aluminum can form an oxide layer that is harder to weld through. Thus, a soft flame helps maintain the desired melting point without damaging the workpiece, ensuring the welds are strong without compromising the integrity of the metal. Therefore, achieving the right flame characteristics is key to successful aluminum welding and producing high-quality results.

2. What is a common result of using insufficient gluing pressure when making a wood joint?

- A. Weak joint due to excessive glue use
- B. Thick glue lines indicating a weak joint**
- C. Delamination of the wood layers
- D. Misalignment of the wood pieces

Using insufficient gluing pressure when making a wood joint typically results in thick glue lines, which are indicative of a weak joint. This occurs because the inadequate pressure does not allow the adhesive to spread evenly and adequately saturate the wood fibers, resulting in an incomplete bond. When the glue is applied, it should be squeezed into the joint under pressure so that it can penetrate the wood surfaces effectively. If the pressure is too low, the glue may not fully adhere to the surfaces, leading to excess glue in the joint that remains uncompressed, and ultimately forming a thick line instead of a tight bond. Thick glue lines can compromise the overall strength of the joint, making it more prone to failure under stress. In a well-executed glue joint, the glue line should be thin and uniform, ensuring a strong connection between the pieces of wood.

3. What should the pressure of acetylene gas be when actually welding?

- A. 10 psi
- B. 5 psi**
- C. 15 psi
- D. 20 psi

The optimum pressure for acetylene gas when welding is generally around 5 psi. This pressure is considered ideal because it allows for a stable flame that is necessary for effective welding. At this pressure, the gas provides a sufficiently hot and controllable flame while minimizing the risk of flashback, which can occur if the pressure is too high. Additionally, operating at around 5 psi ensures that the acetylene remains in a dissolved state within the cylinder, preventing it from becoming unstable. Higher pressures can lead to an incomplete combustion and a less efficient welding process, potentially affecting the quality of the weld joint. Therefore, maintaining the pressure around 5 psi is crucial for achieving optimal welding results.

4. What can be a consequence of using the wrong type of fire extinguisher on a specific fire?

- A. It can extinguish the fire more effectively
- B. It can cause the fire to escalate**
- C. It can increase safety
- D. It can produce toxic gas

Using the wrong type of fire extinguisher on a specific fire can indeed cause the fire to escalate. This is particularly true for fires involving certain materials, where the use of an inappropriate extinguisher could react dangerously with the burning material. For instance, using water on a grease fire can cause the burning oil to splatter and spread the flames rather than extinguish them effectively. Similarly, using a CO₂ extinguisher on a metal fire may not be effective and could allow the fire to continue, potentially leading to a larger blaze. Understanding the fire classification is critical, as different extinguishing agents are designed to combat specific types of fires, such as Class A (ordinary combustibles), Class B (flammable liquids), Class C (electrical), and Class D (flammable metals). Utilizing the correct extinguisher not only helps to put out the fire more effectively but also enhances safety and minimizes the risk of hazardous reactions or toxic emissions.

5. What is the effect of humidity on the drying of dope used in aircraft fabric covering?

- A. It accelerates the drying process
- B. It has no effect
- C. It causes blushing and affects the finish**
- D. It enhances the finish gloss

Humidity significantly influences the drying of dope used in aircraft fabric covering. When the air contains high moisture levels, the evaporation rate of the solvents in the dope decreases, leading to prolonged drying times. This can result in a phenomenon known as "blushing," where moisture gets trapped in the film as it dries, causing a cloudy appearance or dull finish on the surface. The presence of humidity can also affect the dope's ability to cure properly; it may retain moisture within the paint layer, compromising the quality of the finish and making it more prone to defects. Therefore, understanding how humidity affects drying is crucial for achieving a proper, high-quality finish on fabric-covered aircraft. This context highlights the importance of controlling environmental conditions during the application of dope to ensure optimal results and longevity of the fabric covering.

6. What problems are associated with electrically heated windshields?

- A. Delamination and arcing
- B. Scratches and discoloration
- C. Both A and B**
- D. Increased thermal efficiency

Electrically heated windshields can experience several problems, making the understanding of these issues crucial for maintenance and safety. Delamination and arcing are significant concerns. Delamination occurs when the layers of the windshield start to separate, which can affect visibility and structural integrity. Arcing refers to the electrical sparks that can form if there are faults in the heating element, which can also lead to further damage or potential hazards. Additionally, scratches and discoloration are common issues as well. The heating elements embedded within the glass can be susceptible to scratches during routine cleaning or due to normal wear and tear. Discoloration may occur from prolonged exposure to high temperatures or UV light, impacting the clarity and aesthetics of the windshield. Therefore, recognizing that both delamination and arcing, along with scratches and discoloration, are associated with electrically heated windshields is essential for ensuring their proper maintenance and function. This comprehensive understanding is reflected in the correct answer, which encompasses all these issues. Increased thermal efficiency, while a beneficial aspect of electrically heated windshields, does not relate to the problems encountered.

7. What are the main components in a vapor cycle cooling system?

- A. The compressor, evaporator and expansion valve**
- B. The evaporator, condenser, and heater**
- C. The compressor, condenser, expansion valve and evaporator**
- D. The expansion valve, compressor, and control unit**

In a vapor cycle cooling system, the primary components are the compressor, condenser, expansion valve, and evaporator. Each of these parts plays a crucial role in the thermodynamic cycle that facilitates the transfer of heat and the cooling effect. The compressor is responsible for pressurizing the refrigerant and moving it through the system. It takes in low-pressure refrigerant gas, compresses it into a high-pressure gas, and sends it to the condenser. The condenser is where the high-pressure gas refrigerant releases heat and converts into a high-pressure liquid. This process involves removing heat from the refrigerant, which is key to the cooling effect in the system. Next, the expansion valve controls the flow of the high-pressure liquid refrigerant into the evaporator. As the refrigerant passes through the expansion valve, it experiences a drop in pressure, resulting in partial vaporization. Finally, the evaporator takes this low-pressure refrigerant and facilitates the absorption of heat from the surrounding environment, turning it back into a gas and completing the cycle. This continuous flow of refrigerant through the compressor, condenser, expansion valve, and evaporator enables effective cooling. The other options mention components that are either incomplete or incorrectly paired in the context of a vapor cycle

8. If the original rib stitch spacing cannot be determined when re-covering an aircraft, what rib stitching should be used?

- A. Use the rib stitching spacing chart in advisory circular 43.13-1B**
- B. Use any standard rib stitching method from the manufacturer's guidelines**
- C. Use the average spacing from previous coverings**
- D. Consult with the aircraft manufacturer for specific instructions**

Using the rib stitching spacing chart in advisory circular 43.13-1B is the best approach when the original rib stitch spacing cannot be determined. This advisory circular serves as a vital resource for aircraft maintenance practices, providing standardized techniques and recommendations for various components, including rib stitching, which is crucial for maintaining the structural integrity of the aircraft wing or fuselage. The chart in the advisory circular outlines effective spacing guidelines based on the type of fabric and the aircraft's design characteristics, thereby ensuring the re-covering process adheres to safe and accepted industry standards. This is particularly important for maintaining compliance with regulatory requirements and ensuring the safety and airworthiness of the aircraft. While consulting the manufacturer's guidelines or previous coverings might seem reasonable, they do not offer the same assurance of compliance and optimal performance as the established guidelines in the advisory circular. Relying solely on averages or personal judgment may lead to inconsistencies that could compromise the effectiveness of the stitch, thereby affecting the aircraft's performance and safety.

9. What is typically used to clean deicer boots?

- A. Acidic cleaning agents
- B. High-pressure water spray
- C. Mild soap and water solution**
- D. Specialized solvent cleaners

Using a mild soap and water solution is the recommended method for cleaning deicer boots. Deicer boots are made from rubber or other materials that can be sensitive to harsh chemicals or abrasive cleaning methods. A mild soap mixed with water provides an effective way to remove dirt, ice residue, and contaminants without damaging the material or affecting its ability to function properly. This cleaning method is gentle, ensuring that the integrity of the deicer boot is maintained while also being sufficient to keep the surface clean. Specialized solvent cleaners, although effective for other purposes, may contain harsh chemicals that could degrade the rubber or other materials of the deicer boots over time. High-pressure water spray presents a risk as well; it could damage the boots or push contaminants into areas that could compromise their effectiveness. Acidic cleaning agents can also cause significant damage to the material. Therefore, using a mild soap and water solution strikes the right balance between effective cleaning and material safety.

10. What is the purpose of drain grommets in aircraft fabric?

- A. To reinforce wings against damage
- B. To allow moisture to escape and provide ventilation**
- C. To secure the fabric to the frame
- D. To enhance aerodynamic performance

The purpose of drain grommets in aircraft fabric is to allow moisture to escape and provide ventilation. These grommets are essential in preventing water accumulation between the fabric and the underlying structure, which could lead to issues such as rot or corrosion. By facilitating drainage, they help maintain the integrity of the aircraft's fabric covering and ensure that any trapped moisture can exit, thereby preserving the performance and longevity of the aircraft. The proper ventilation achieved by drain grommets also contributes to the overall safety and efficiency of the aircraft, preventing issues related to moisture buildup.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://amtairframeoandp.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE