

American Society for Clinical Pathology (ASCP) Histotechnologist Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. Which type of cells are known for producing and maintaining myelin sheaths in the central nervous system?**
 - A. Astrocytes**
 - B. Oligodendroglia**
 - C. Schwann cells**
 - D. Neurons**

- 2. What is the primary function of lymphatic tissue?**
 - A. To transport oxygenated blood**
 - B. To support the immune system in fighting infections**
 - C. To connect muscles to bones**
 - D. To store energy in the form of fat**

- 3. What type of specimens does a Giemsa stain help identify?**
 - A. Microbial cultures**
 - B. Cellular morphology**
 - C. Biopsy tissues**
 - D. Pathogen DNA**

- 4. What is the primary function of tissue microarrays in histopathology?**
 - A. Facilitate low-throughput analysis of single tissue samples**
 - B. Allow for high-throughput analysis of multiple tissue samples on a single slide**
 - C. Enhance the visibility of cellular components**
 - D. Provide a method for staining tissue sections**

- 5. Which staining method is most effective for revealing neurons in brain tissue samples?**
 - A. Hematoxylin and eosin stain**
 - B. Periodic acid-Schiff stain**
 - C. Nissl stain**
 - D. Immunohistochemical staining**

6. What is a cryostat primarily used for in histopathology?

- A. To fix tissues**
- B. To cut frozen sections**
- C. To embed tissues**
- D. To stain sections**

7. Name one common fixative used in histopathology.

- A. Alcohol**
- B. Formalin**
- C. Acetone**
- D. Phenol**

8. Which type of sample is typically analyzed using frozen section analysis?

- A. Routine biopsy samples**
- B. Intraoperative samples**
- C. Blood samples**
- D. Bone marrow aspirates**

9. Which type of microtome is commonly used in histology?

- A. Rotary microtome**
- B. Sledge microtome**
- C. Sliding microtome**
- D. Ultramicrotome**

10. Which of the following is a result of using hydrolases?

- A. Formation of larger molecules**
- B. Splitting of substrates**
- C. Creation of energy**
- D. Inhibition of chemical reactions**

Answers

SAMPLE

1. B
2. B
3. B
4. B
5. C
6. B
7. B
8. B
9. A
10. B

SAMPLE

Explanations

SAMPLE

1. Which type of cells are known for producing and maintaining myelin sheaths in the central nervous system?

- A. Astrocytes**
- B. Oligodendroglia**
- C. Schwann cells**
- D. Neurons**

The correct answer is indeed oligodendroglia, as these cells are specifically responsible for producing and maintaining the myelin sheaths that insulate the axons of neurons in the central nervous system (CNS). Myelin sheaths are crucial for the rapid conduction of electrical impulses along the axons, enhancing signal transmission efficiency.

Oligodendrocytes, the type of oligodendroglia, are unique to the CNS and can myelinate multiple axons simultaneously, which contrasts with Schwann cells, which are found in the peripheral nervous system and typically myelinate only one axon at a time. This distinction is important because it highlights the specialized roles these cell types play in different parts of the nervous system. Astrocytes, while important for nutritional support and maintaining the blood-brain barrier, do not contribute to myelin production. They fulfill various functions that support the overall environment of the neurons but are not involved in myelination. Neurons themselves are the main signaling cells in the nervous system and rely on oligodendrocytes to provide the myelin necessary for efficient electrical signaling, but they do not produce myelin. This delineation of roles underscores why oligodendroglia is the correct choice for

2. What is the primary function of lymphatic tissue?

- A. To transport oxygenated blood**
- B. To support the immune system in fighting infections**
- C. To connect muscles to bones**
- D. To store energy in the form of fat**

The primary function of lymphatic tissue is to support the immune system in fighting infections. Lymphatic tissue is integral to the body's immune response, as it produces and houses lymphocytes, which are key white blood cells involved in identifying and combating pathogens such as bacteria and viruses. This tissue creates a network through which lymph, a fluid containing infection-fighting white blood cells, circulates.

Additionally, lymph nodes, which are clusters of lymphatic tissue, act as filters, trapping pathogens and facilitating their destruction. The other options do not relate to the role of lymphatic tissue. For instance, transporting oxygenated blood pertains to the function of the circulatory system, primarily carried out by arteries and veins. Connecting muscles to bones is the role of tendons. Storing energy in the form of fat is a function of adipose tissue, not lymphatic tissue. Thus, the selected answer correctly identifies the lymphatic system's crucial role in immune function and infection defense.

3. What type of specimens does a Giemsa stain help identify?

- A. Microbial cultures
- B. Cellular morphology**
- C. Biopsy tissues
- D. Pathogen DNA

Giemsa stain is particularly valuable for assessing cellular morphology, which includes the study of shapes, sizes, and structures of cells. This stain highlights cellular components and provides contrast, allowing for the identification of various cell types as well as any abnormalities that may be present within those cells. It is commonly used in hematology to examine blood smears, bone marrow aspirates, and cytological preparations because it effectively stains the nuclei, cytoplasm, and granules of cells, making it easier to evaluate the cellular characteristics. While other options, such as microbial cultures, biopsy tissues, and pathogen DNA, may involve special staining or detection techniques in their respective contexts, they do not typically utilize Giemsa stain for the purpose of identifying and characterizing cellular morphology. In contrast, the specificity of Giemsa stain lies in its ability to elucidate the details of cell structure, thus making it a fundamental tool in cytology and histopathology for morphological evaluation.

4. What is the primary function of tissue microarrays in histopathology?

- A. Facilitate low-throughput analysis of single tissue samples
- B. Allow for high-throughput analysis of multiple tissue samples on a single slide**
- C. Enhance the visibility of cellular components
- D. Provide a method for staining tissue sections

Tissue microarrays are specifically designed to enhance the efficiency of histopathological studies by enabling high-throughput analysis of multiple tissue samples on a single slide. This technique allows researchers and pathologists to assess numerous samples simultaneously, leading to significant savings in time and resources. By using a single slide, multiple specimens can be analyzed under identical conditions, reducing variability and improving comparative studies, which is crucial for modern research and diagnostic practices. The design of tissue microarrays involves arranging small cores of tissue from different samples in a grid format on a single glass slide. This format not only facilitates the examination of various tissues but also allows for the simultaneous application of stains and immunohistochemical techniques, further enhancing the efficiency of the histopathological evaluation process. Therefore, the primary function aligns with the ability to perform high-throughput analysis, making it an invaluable tool in contemporary histopathology.

5. Which staining method is most effective for revealing neurons in brain tissue samples?

- A. Hematoxylin and eosin stain**
- B. Periodic acid-Schiff stain**
- C. Nissl stain**
- D. Immunohistochemical staining**

The Nissl stain is specifically designed to highlight neuronal cell bodies and their rough endoplasmic reticulum, known as Nissl substance, which is rich in RNA. This stain effectively delineates the cytoplasm of neurons, allowing for a clear visualization of the cells and their organization within brain tissue samples. The Nissl bodies appear as distinctly stained areas, making it easier to identify the presence, distribution, and structural integrity of neurons. Other staining methods have different applications. Hematoxylin and eosin (H&E) stain is a general-purpose stain that provides an overview of tissue structure and morphology, but it does not specifically highlight neurons in a manner as effective as the Nissl stain. Periodic acid-Schiff (PAS) stain primarily targets polysaccharides and glycoproteins and is often used to highlight structures like mucins and certain cell types, but is not specific for neurons. Immunohistochemical staining can be used for specific proteins, including some found in neurons, but it requires additional knowledge of specific antigens and is not a broadly applicable method for simply revealing neuron morphology.

6. What is a cryostat primarily used for in histopathology?

- A. To fix tissues**
- B. To cut frozen sections**
- C. To embed tissues**
- D. To stain sections**

A cryostat is primarily used in histopathology to cut frozen sections of tissue. This device operates at very low temperatures, allowing for rapid freezing of tissue samples, which preserves cellular details better than other methods that involve chemical fixation. By freezing the tissue, the cryostat enables pathologists to obtain thin slices that can be used for immediate microscopic examination, often necessary in intraoperative consultations where a quick diagnosis is required. This technique is especially valuable for certain types of tissues and procedures, such as surgical margins during cancer resections, where the speed of obtaining a diagnosis is crucial. The ability to prepare and examine these sections quickly allows for timely clinical decisions. In contrast, the processes of fixing tissues, embedding them in paraffin, and staining sections are carried out using different equipment and techniques that follow the initial cutting of frozen sections in a cryostat. Each of these steps plays a specific role in the overall histological processing of tissue samples, but the cryostat's primary function is indeed to cut frozen sections.

7. Name one common fixative used in histopathology.

- A. Alcohol
- B. Formalin**
- C. Acetone
- D. Phenol

Formalin is a widely used fixative in histopathology primarily due to its ability to preserve tissue morphology while also providing excellent penetration and fixation of cellular structures. It is a solution of formaldehyde in water, typically buffered to maintain a neutral pH. This fixative effectively cross-links proteins, which helps to stabilize the tissue components and prevent degradation during processing and embedding.

Additionally, formalin is compatible with routine staining protocols, making it a preferred choice among histotechnologists. While other options like alcohol and acetone can be used as fixatives in specific circumstances, such as for certain cytological specimens or in situations requiring rapid fixation, they are not as commonly employed as formalin for general histopathology due to their adverse effects on tissue morphology and greater risk of artifacts. Phenol has its applications but is less frequently utilized as a primary fixative in typical histological practices. Therefore, formalin stands out as the standard choice for tissue fixation in histopathology.

8. Which type of sample is typically analyzed using frozen section analysis?

- A. Routine biopsy samples
- B. Intraoperative samples**
- C. Blood samples
- D. Bone marrow aspirates

Frozen section analysis is a rapid diagnostic technique primarily used to provide immediate information about tissue samples during surgical procedures. The technique is particularly valuable for intraoperative samples, as it allows pathologists to quickly assess whether the tumor margins are clear or if there are any unexpected findings that may alter the course of surgery. Intraoperative frozen section analysis aids surgeons in making real-time decisions regarding the next steps in the procedure, such as whether to proceed with the full excision of a tumor or to perform additional biopsies. The method is designed for speed and efficiency, taking minimal time to prepare and analyze the sample, which is critical during surgery. Other types of samples, such as routine biopsy samples, can be evaluated using more thorough processing methods that are not as time-sensitive. Blood samples, while important for various diagnostics, do not require the frozen section approach, which is specific to tissue analysis. Similarly, bone marrow aspirates are typically subjected to different analytical methods that can provide a more comprehensive evaluation rather than the quick analysis offered by frozen sections. Therefore, the correct answer highlights the unique role that frozen section analysis plays in the context of intraoperative decision-making.

9. Which type of microtome is commonly used in histology?

- A. Rotary microtome**
- B. Sledge microtome**
- C. Sliding microtome**
- D. Ultramicrotome**

The rotary microtome is widely recognized as the most commonly used type of microtome in histology. This instrument excels at producing thin, consistent sections of paraffin-embedded tissue, which is essential for microscopy and diagnostic evaluation. The design of the rotary microtome allows for a rotating blade that moves across the stationary tissue block, typically set at fixed intervals which provide uniform thickness of sections. This capability is crucial because high-quality histological sections must be of even thickness to ensure accurate examination and diagnosis. The rotary microtome's ease of use and the ability to produce high-quality sections make it a standard in histopathology labs, allowing for efficient preparation of tissue samples for various staining techniques. This precision is essential as it directly impacts the visibility of cellular structures in the stained slides, thereby aiding pathologists in making accurate diagnoses. While other types such as the sledge microtome, sliding microtome, and ultramicrotome serve specific functions (like for harder tissues or ultra-thin sections for electron microscopy), they are not used as broadly or routinely in general histological practices as the rotary microtome is.

10. Which of the following is a result of using hydrolases?

- A. Formation of larger molecules**
- B. Splitting of substrates**
- C. Creation of energy**
- D. Inhibition of chemical reactions**

Hydrolases are enzymes that catalyze the hydrolysis reaction, which involves the addition of water to break chemical bonds within substrate molecules. This process results in the splitting of larger substrates into smaller molecules, such as the breakdown of proteins into amino acids or polysaccharides into monosaccharides. The specific action of hydrolases is crucial in various biological processes, including digestion and metabolic pathways, where they facilitate the breakdown of complex molecules. While other enzymes can participate in forming larger molecules, creating energy, or affecting reaction rates, the defining characteristic of hydrolases is their role in cleaving bonds in substrates through the incorporation of water, leading directly to the formation of smaller products. Thus, recognizing that the splitting of substrates is the primary function of hydrolases clarifies why this choice is the correct answer.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://ascp-histotechologist.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE