

American Registry of Radiologic Technologists (ARRT) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What is the result of increasing beam restriction?**
 - A. Increased exposure**
 - B. Decreased contrast**
 - C. Increased scatter radiation**
 - D. Increased contrast**

- 2. What is the maximum fetal dose delivered by general diagnostic exams in RAD?**
 - A. 3-4 RAD**
 - B. 1-2 RAD**
 - C. 5-6 RAD**
 - D. 0-1 RAD**

- 3. What is the maximum dose equivalent for a pregnant woman's fetus/embryo?**
 - A. 1 mSv**
 - B. 10 mSv**
 - C. 5 mSv**
 - D. 50 mSv**

- 4. In which scenario is increasing mAs necessary?**
 - A. To decrease contrast**
 - B. To increase detail**
 - C. To improve density**
 - D. To reduce blurriness**

- 5. In electronic imaging, what do mAs and kV not regulate?**
 - A. Image sharpness**
 - B. Density/brightness and contrast**
 - C. Spatial frequency**
 - D. Image acquisition time**

6. What are atoms of the same element but with different mass numbers called?

- A. Isomers**
- B. Isotopes**
- C. Allotropes**
- D. Homologs**

7. What controls contrast changes in electronic imaging?

- A. Matrix size**
- B. Window level**
- C. Window width**
- D. Exposure factors**

8. To optimize diagnostic imaging while protecting patients, a combination of which two factors is essential?

- A. High mAs and Low kVp**
- B. Low mAs and High kVp**
- C. High mAs and High kVp**
- D. Low mAs and Low kVp**

9. Milliamperage is directly proportional to X-ray what?

- A. Density**
- B. Intensity**
- C. Quality**
- D. Duration**

10. Which type of radiation is typically associated with poor shielding in radiographic environments?

- A. Primary radiation**
- B. Secondary radiation**
- C. Scatter radiation**
- D. Background radiation**

Answers

SAMPLE

1. D
2. B
3. C
4. C
5. A
6. B
7. C
8. B
9. B
10. A

SAMPLE

Explanations

SAMPLE

1. What is the result of increasing beam restriction?

- A. Increased exposure
- B. Decreased contrast
- C. Increased scatter radiation
- D. Increased contrast**

Increasing beam restriction results in increased contrast within the radiographic image. When the x-ray beam is more tightly collimated, less scattered radiation reaches the image receptor. Scatter radiation, which is produced when x-rays interact with matter, contributes to a reduction in image contrast by adding unwanted exposure to the image. Therefore, with enhanced beam restriction, there is a reduction in the amount of scatter reaching the receptor, which in turn enhances the visibility of the structures within the image, leading to higher image contrast. This is particularly important in diagnostic imaging as it aids in better differentiation between various tissues and structures, making it easier for radiologists to interpret the images accurately.

2. What is the maximum fetal dose delivered by general diagnostic exams in RAD?

- A. 3-4 RAD
- B. 1-2 RAD**
- C. 5-6 RAD
- D. 0-1 RAD

The maximum fetal dose delivered by general diagnostic exams typically falls within the range of 1-2 RAD. This is important because diagnostic radiology is designed to minimize radiation exposure to patients, especially to highly sensitive populations such as pregnant individuals. In general, it is recognized that the potential risk to the fetus increases with dose; however, the doses associated with most routine diagnostic radiology procedures are quite low. The threshold understanding in radiology is that efforts are made to keep fetal exposure as low as reasonably achievable (ALARA principle). In clinical practice, doses like 1-2 RAD are considered a maximum exposure level for the fetus for standard imaging procedures. This threshold ensures that the associated risks of radiation exposure are minimized, allowing medical professionals to perform necessary imaging while still prioritizing fetal safety. Higher ranges of radiation doses, like those suggested in the other options, would be more concerning in terms of potential biological effects, including teratogenic effects or increased cancer risk later in life, which could occur with sustained or higher dose exposures.

3. What is the maximum dose equivalent for a pregnant woman's fetus/embryo?

- A. 1 mSv
- B. 10 mSv
- C. 5 mSv**
- D. 50 mSv

The maximum dose equivalent for a pregnant woman's fetus or embryo is set at 5 mSv. This limit is established to minimize the radiation risk to the developing fetus during gestation. The rationale behind this dose limit is the principle of radiation protection, which aims to ensure that exposure is kept as low as reasonably achievable (ALARA), particularly for vulnerable populations like unborn children. This dose equivalent is consistent with international guidelines and recommendations that take into account the increased sensitivity of developing tissues to radiation. The 5 mSv limit suggests that there should be adequate consideration of the potential risks associated with fetal exposure to ionizing radiation, which includes possible developmental impacts and long-term effects. In practice, this means that healthcare providers and radiologic technologists must be vigilant in accordance with regulations to protect both pregnant patients and their fetuses from unnecessary radiation exposure while ensuring that the necessary medical procedures can still be performed safely.

4. In which scenario is increasing mAs necessary?

- A. To decrease contrast
- B. To increase detail
- C. To improve density**
- D. To reduce blurriness

Increasing milliampere-seconds (mAs) is crucial for improving the overall density of a radiographic image. Density refers to the degree of blackening on the X-ray film or the overall brightness of a digital image. When mAs is increased, more X-ray photons are produced, resulting in a greater exposure of the radiation detector. This enhancement in exposure translates to a darker image, which is often necessary when the initial image is too light or underexposed. In specific scenarios, such as when imaging thicker body parts or when the subject's density is high (like certain tissues or foreign bodies), increasing mAs provides the necessary radiation dose to penetrate these structures adequately, thus ensuring that the captured image has the appropriate density for accurate interpretation. The other scenarios do not directly relate to the necessity of increasing mAs. For example, while increasing mAs could potentially influence contrast, it doesn't serve the specific purpose of controlling this characteristic as effectively as other factors, such as the kilovolt peak (kVp). Increasing mAs may also lead to higher doses without contributing to the resolution of detail or addressing blurriness. It's important to balance exposure factors for optimal image quality while adhering to radiation safety principles.

5. In electronic imaging, what do mAs and kV not regulate?

- A. Image sharpness**
- B. Density/brightness and contrast**
- C. Spatial frequency**
- D. Image acquisition time**

In electronic imaging, mAs (milliampere-seconds) and kV (kilovoltage) primarily influence image density/brightness and contrast. mAs affects the quantity of photons produced during the exposure, directly impacting the overall brightness of the image, while kV influences the energy of the x-ray beam, affecting penetration and contrast by determining the range of photon interactions with tissues. However, density/brightness and contrast are not aspects that mAs and kV do not regulate. Spatial frequency, which relates to the resolution and level of detail that can be appreciated in an image, is influenced by aspects of the imaging system, including the detector's characteristics and the quality of the image processing. Furthermore, image acquisition time, which refers to the time taken to capture an image, is related to exposure parameters but is more about the system's configuration rather than a direct regulation of mAs and kV. Therefore, considering these explanations, it is clear that image sharpness is also influenced by other factors, but mAs and kV do not directly regulate spatial frequency.

6. What are atoms of the same element but with different mass numbers called?

- A. Isomers**
- B. Isotopes**
- C. Allotropes**
- D. Homologs**

Atoms of the same element that have different mass numbers are called isotopes. This occurs because while the number of protons in the nucleus remains the same, indicating they are the same element, the number of neutrons varies. This difference in neutron count results in different mass numbers for these isotopes. For example, carbon has several isotopes, such as carbon-12 and carbon-14. Both isotopes have six protons (which defines them as carbon), but carbon-12 has six neutrons, whereas carbon-14 has eight neutrons. The varying numbers of neutrons contribute to differences in stability and radioactive properties among the isotopes of the same element. The other options refer to different concepts: isomers pertain to compounds with the same molecular formula but different structures, allotropes refer to different forms of the same element in the same physical state, and homologs usually refer to compounds with a similar structure differing by a specific repeating unit. None of these definitions pertain to variations in mass numbers of the same element.

7. What controls contrast changes in electronic imaging?

- A. Matrix size**
- B. Window level**
- C. Window width**
- D. Exposure factors**

Contrast changes in electronic imaging are primarily controlled by window width. Window width refers to the range of pixel values that are displayed as shades of gray in the image. A wider window width results in lower contrast, as a broader range of values is represented, leading to more similar shades of gray. Conversely, a narrower window width enhances contrast because it focuses on a smaller range of values, making differences between the shades more pronounced. Adjusting the window width can greatly affect the visibility of various structures within the image, allowing a radiologic technologist to emphasize certain tissues or abnormalities. This is particularly important in diagnostic imaging, where clear differentiation between different anatomical structures can be crucial for accurate interpretation. Matrix size does play a role in image resolution and can indirectly affect details visible in the image, but it does not control contrast directly. Window level is important for brightness adjustments but is separate from contrast control. Exposure factors influence the initial quality of the image but do not specifically govern how contrast is adjusted post-acquisition. Thus, window width is the key factor for controlling contrast changes in electronic imaging.

8. To optimize diagnostic imaging while protecting patients, a combination of which two factors is essential?

- A. High mAs and Low kVp**
- B. Low mAs and High kVp**
- C. High mAs and High kVp**
- D. Low mAs and Low kVp**

The combination of low mAs and high kVp is essential for optimizing diagnostic imaging while protecting patients. Using low mAs reduces the amount of radiation that the patient receives during the imaging procedure. This is crucial as it minimizes the exposure, thereby protecting the patient from potential radiation-related risks. On the other hand, employing high kVp improves the penetrating power of the x-ray beam. This allows for better visualization of anatomical structures, particularly in thicker body parts, while still maintaining image quality. High kVp results in less scatter radiation, which enhances image contrast and detail. This combination effectively balances the need for sufficient image quality—crucial for accurate diagnosis—while keeping patient radiation exposure to a minimum. Thus, low mAs and high kVp work synergistically to achieve optimal imaging outcomes safely.

9. Milliamperage is directly proportional to X-ray what?

- A. Density
- B. Intensity**
- C. Quality
- D. Duration

Milliamperage (mA) is a critical factor in radiography that directly influences the intensity of the X-ray beam produced during exposure. When the milliamperage is increased, the number of electrons flowing from the cathode to the anode in the X-ray tube rises, which results in a greater quantity of X-ray photons being generated. This increase in the number of X-ray photons leads to a higher intensity of the X-ray beam. As intensity is defined as the amount of energy transmitted per unit area, it becomes clear that the relationship between mA and beam intensity is directly proportional; doubling the mA effectively doubles the intensity of the X-ray beam, provided that all other variables remain constant. This relationship greatly impacts the quality of images produced, as higher intensity can improve the overall radiographic density on the film—though density is not directly the same as intensity. The other options presented refer to different concepts in radiography. Quality refers to the penetrative ability of the X-ray beam, which is more influenced by the kilovoltage peak (kVp) rather than milliamperage. Density relates to the degree of blackening on the film, which is indirectly influenced by mA through its effect on beam intensity. Duration

10. Which type of radiation is typically associated with poor shielding in radiographic environments?

- A. Primary radiation**
- B. Secondary radiation
- C. Scatter radiation
- D. Background radiation

The correct answer is primary radiation. This type of radiation originates directly from the x-ray tube during the imaging procedure. In a radiographic environment, primary radiation is the beam that passes through the patient and reaches the image receptor. Because primary radiation is directed toward the imaging area, effective shielding is essential to protect personnel and the surrounding environment from exposure. In contrast, secondary radiation includes any radiation that is generated as a result of the interaction of primary radiation with matter, such as the patient or other objects in the room. While secondary radiation can also present exposure risks, it is usually less intense and can be more effectively managed with proper shielding measures. Scatter radiation, which is a type of secondary radiation that results from deflected x-rays, is typically reduced through careful beam collimation and the use of protective barriers. Background radiation is a constant, low-level radiation present in the environment from natural sources, and it doesn't pose the same specific shielding challenges as primary radiation does. Understanding the characteristics of primary radiation is crucial for radiologic technologists, as it guides the implementation of safety protocols to minimize exposure to staff and patients alike.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://arrrt.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE