American Medical Technologist (AMT) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. From which vein should blood NOT be collected due to its anatomical position?
 - A. Cephalic vein
 - B. Median cubital vein
 - C. Basilic vein
 - D. Radial vein
- 2. A serum or plasma specimen with high levels of fatty substances is described as what?
 - A. Hemolytic
 - **B. Serous**
 - C. Chylous
 - D. Lipemic
- 3. What is the primary purpose of taking a 24-hour urine specimen?
 - A. To assess fluid levels in the bloodstream
 - B. For metabolic evaluations
 - C. To measure renal function
 - D. To screen for drug usage
- 4. What is the best approach to use when drawing blood from a 7-year-old child?
 - A. Explain the procedure in simple terms and ask for cooperation
 - B. Use complex medical terminology to explain the process
 - C. Ignore the child's feelings and proceed quickly
 - D. Ask the child to leave the room before drawing blood
- 5. For how long can urine be kept at room temperature before chemical and microscopic changes invalidate the results?
 - A. 30 minutes
 - B. 1 hour
 - C. 2 hours
 - D. 4 hours

- 6. What condition is most likely to cause hemoconcentration?
 - A. Overhydration
 - **B.** Severe bleeding
 - C. Dehydration
 - D. Anemia
- 7. Which of the following is NOT a certification offered by AMT?
 - A. Medical Laboratory Scientist (MLS)
 - **B. Registered Medical Assistant (RMA)**
 - C. Phlebotomy Technician (PBT)
 - D. Medical Doctor (MD)
- 8. Which analyte is most critically affected in a hemolyzed specimen?
 - A. Glucose
 - **B. Potassium**
 - C. Sodium
 - D. Calcium
- 9. The guaiac card occult blood test is commonly performed on which type of sample?
 - A. Urine
 - B. Blood
 - C. Stool
 - D. Sputum
- 10. Which color-coded tube is most frequently associated with coagulation tests?
 - A. Red
 - **B.** Purple
 - C. Green
 - D. Light blue

<u>Answers</u>

- 1. C 2. D 3. C 4. A 5. B 6. C 7. D 8. B 9. C 10. D

Explanations

1. From which vein should blood NOT be collected due to its anatomical position?

- A. Cephalic vein
- B. Median cubital vein
- C. Basilic vein
- D. Radial vein

Blood should not be collected from the basilic vein due to its anatomical position and proximity to important structures. The basilic vein is located on the medial (inner) side of the forearm and arm, making it close to major nerves and arteries. Specifically, it runs alongside the brachial artery and the median nerve, which increases the risk of nerve damage and arterial puncture during venipuncture. In comparison, the median cubital vein, often preferred for blood draws, is centrally located in the antecubital fossa and is usually large and superficial, making it easy to locate and access. The cephalic vein, located on the lateral (outer) side, is similarly accessible, but the basilic vein's anatomical location poses a higher risk of complications. Collecting blood from the radial vein is less common as it can be more difficult to access and is generally not preferred when larger volumes or multiple samples are needed.

2. A serum or plasma specimen with high levels of fatty substances is described as what?

- A. Hemolytic
- **B. Serous**
- C. Chylous
- D. Lipemic

A serum or plasma specimen that has high levels of fatty substances is described as lipemic. Lipemia occurs when there are elevated levels of triglycerides or lipids in the blood, often resulting from dietary intake, metabolic disorders, or specific disease states. This condition can lead to a cloudy or turbid appearance of the serum or plasma due to the presence of these fatty substances, which can interfere with certain laboratory tests. In contrast, hemolytic refers to the breakdown of red blood cells, which may cause the serum to appear red or pink but is unrelated to fatty substances. Serous typically describes a clear, pale yellow fluid, often associated with serum but does not specifically relate to lipids. Chylous refers to a type of fluid that is rich in chyle, which is a milky bodily fluid consisting of lymph and emulsified fats that typically occurs in the lymphatic system rather than serum or plasma. Therefore, the term "lipemic" is most appropriate for the scenario given in the question, as it directly addresses the presence of high levels of fatty substances in the specimen.

3. What is the primary purpose of taking a 24-hour urine specimen?

- A. To assess fluid levels in the bloodstream
- B. For metabolic evaluations
- C. To measure renal function
- D. To screen for drug usage

The focus of taking a 24-hour urine specimen is primarily to measure renal function. This method provides healthcare professionals with important information about how well the kidneys are filtering waste products from the blood and can help in diagnosing various conditions related to kidney health. By collecting urine over a full 24-hour period, it allows for a comprehensive assessment of substances excreted by the kidneys, such as proteins, electrolytes, and other metabolites. This can reveal abnormalities that indicate issues like nephrotic syndrome, kidney failure, or other renal disorders. While other choices may relate to the use of urine specimens, they do not capture the primary focus of the 24-hour collection. For instance, assessments of fluid levels in the bloodstream generally rely on blood tests rather than urine tests, and while metabolic evaluations may indeed use urine samples, they typically do not require the full 24-hour collection approach. Similarly, screening for drug usage can be a purpose of urine tests but is usually conducted with a single sample rather than taking a comprehensive 24-hour collection.

4. What is the best approach to use when drawing blood from a 7-year-old child?

- A. Explain the procedure in simple terms and ask for cooperation
- B. Use complex medical terminology to explain the process
- C. Ignore the child's feelings and proceed quickly
- D. Ask the child to leave the room before drawing blood

The best approach when drawing blood from a 7-year-old child is to explain the procedure in simple terms and ask for cooperation. This method is effective because children often respond better to straightforward and relatable explanations that help alleviate their fears and anxieties about medical procedures. By using simple language, the child can understand what is happening, which fosters trust and makes them feel more comfortable throughout the process. Engaging the child and asking for their cooperation can also empower them, making it a more positive experience. This approach acknowledges the child's feelings and promotes a supportive environment, which is especially important in pediatric care. Creating a trusting atmosphere can lead to better cooperation from the child and can result in a smoother blood draw with less stress for both the patient and the healthcare provider.

- 5. For how long can urine be kept at room temperature before chemical and microscopic changes invalidate the results?
 - A. 30 minutes
 - B. 1 hour
 - C. 2 hours
 - D. 4 hours

Urine specimens can be kept at room temperature for a limited time before alterations in chemical composition and microscopic characteristics begin to affect the results. A one-hour timeframe is often cited as the upper limit for maintaining the integrity of the sample. During the first hour, most urine specimens retain their original composition; however, beyond this period, factors such as bacterial growth and the breakdown of cellular elements can lead to inaccuracies in test results. Chemical tests may show false positivity or negativity due to changes in pH, specific gravity, or the degradation of certain analytes. Similarly, for microscopic examinations, the presence of bacteria or the breakdown of formed elements can affect the accuracy of findings related to red blood cells, white blood cells, and casts. If a specimen must be stored longer than one hour before analysis, it is recommended to refrigerate the sample to minimize changes. This practice helps preserve the integrity of the urine for subsequent testing.

6. What condition is most likely to cause hemoconcentration?

- A. Overhydration
- **B.** Severe bleeding
- C. Dehydration
- D. Anemia

Hemoconcentration refers to an increase in the concentration of red blood cells and other substances in the blood due to a decrease in plasma volume. This phenomenon is most commonly associated with dehydration, as a reduction in fluid levels in the body leads to a relative increase in the components of blood. Dehydration can occur due to various reasons such as inadequate fluid intake, excessive loss of fluids through sweating, diarrhea, vomiting, or certain medical conditions that lead to fluid loss. When the body loses water, the remaining blood becomes more concentrated, resulting in hemoconcentration. On the other hand, overhydration leads to dilution of the blood, potentially causing hemodilution rather than hemoconcentration. Severe bleeding generally results in a loss of red blood cells and plasma volume, which can lead to a decrease in overall blood concentrations. Anemia is a condition characterized by a deficiency in red blood cells or hemoglobin, but it does not typically cause hemoconcentration on its own; instead, it reflects a lack of red blood cells. Thus, the context behind dehydration explains why it is the condition most likely to cause hemoconcentration, as it directly impacts the balance of fluids and solutes in the bloodstream.

7. Which of the following is NOT a certification offered by AMT?

- A. Medical Laboratory Scientist (MLS)
- B. Registered Medical Assistant (RMA)
- C. Phlebotomy Technician (PBT)
- D. Medical Doctor (MD)

The correct answer is that "Medical Doctor (MD)" is not a certification offered by the American Medical Technologists (AMT). AMT provides certification for various allied health professionals, such as Medical Laboratory Scientists, Registered Medical Assistants, and Phlebotomy Technicians, which are all integral to the healthcare system. In contrast, the title of Medical Doctor (MD) is a designation conferred upon individuals who have completed medical school and a residency program. It is governed by different accrediting and licensing bodies, primarily focused on physicians and their respective practice standards. As such, while AMT plays a significant role in certifying many healthcare professionals, it does not include the medical doctor designation within its scope. This distinction highlights the difference between certifications for allied health professions and the medical practitioner qualification of an MD.

8. Which analyte is most critically affected in a hemolyzed specimen?

- A. Glucose
- **B. Potassium**
- C. Sodium
- D. Calcium

Potassium is significantly affected in a hemolyzed specimen due to its location and movement within the body. Inside the red blood cells, potassium is predominantly found, and when these cells are hemolyzed, potassium is released into the surrounding plasma. This elevation in potassium levels can lead to falsely high results in laboratory tests, which is clinically important as it can mimic conditions such as hyperkalemia. While glucose, sodium, and calcium levels can also be impacted by hemolysis, the degree to which potassium is affected is much more pronounced. Hemolysis can result in a rapid influx of potassium into the serum, which is crucial for laboratory personnel to recognize, as it can lead to misinterpretation of a patient's electrolyte status and potential treatment decisions. Understanding this critical effect helps in ensuring accurate clinical assessments and managing patients effectively.

- 9. The guaiac card occult blood test is commonly performed on which type of sample?
 - A. Urine
 - B. Blood
 - C. Stool
 - D. Sputum

The guaiac card occult blood test is specifically designed to detect the presence of hidden (occult) blood in stool samples. This test is often utilized in screening for gastrointestinal issues, such as colorectal cancer or gastrointestinal bleeding. The quaiac chemical reacts with hemoglobin in the presence of blood, changing color and indicating a positive result. Stool is the primary specimen type for this test because it allows for the assessment of blood that may not be visible to the naked eye. The other sample types listed—urine, blood, and sputum—are not suitable for this particular test, as they involve different physiological processes and would require different methods or tests to assess for blood or other related conditions. Thus, the stool sample is firmly established as the correct choice for the guaiac card occult blood test.

- 10. Which color-coded tube is most frequently associated with coagulation tests?
 - A. Red
 - B. Purple
 - C. Green
 - D. Light blue

The light blue tube is specifically designed for coagulation tests, making it the most frequently associated choice for these types of analyses. This tube typically contains sodium citrate as an anticoagulant, which is essential for preserving the blood's natural clotting function during the testing process. By binding calcium ions, sodium citrate prevents clot formation in the sample, enabling accurate measurements of clotting factors. When performing coagulation tests, such as PT (prothrombin time) and aPTT (activated partial thromboplastin time), the accurate measurement of clotting activity is crucial for diagnosing bleeding disorders or for monitoring anticoagulation therapy. The light blue tube's specific formulation supports such requirements, ensuring that the blood sample remains in a state that accurately reflects the patient's coagulation profile. In contrast, other tubes serve different purposes. For example, the red tube is typically used for serum tests without anticoagulants, while the purple tube contains ethylenediaminetetraacetic acid (EDTA), which is primarily intended for hematological studies rather than coagulation. Green tubes, often used for tests requiring heparin, may not provide the same applicable results for standard coagulation assessments. This distinction reinforces the light blue tube's primary role in coagulation