American Medical Certification Association (AMCA) Phlebotomy Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. When should a sharps container be replaced?
 - A. When it is half full
 - B. When it is three-quarters full
 - C. When it is overflowing
 - D. When it is empty
- 2. When performing phlebotomy on a young, fearful child, what should you explain to them?
 - A. The procedure will be quick and painless
 - B. Explain in simple terms what will be done
 - C. Not to worry
 - D. That it's for their own good
- 3. What should a patient inform the phlebotomist of before blood collection?
 - A. Previous fainting episodes
 - B. All food consumed the day prior
 - C. If they have ever donated blood
 - D. How much sleep they had last night
- 4. What is the most common position for blood drawing from a patient?
 - A. Supine
 - **B. Sitting**
 - C. Standing
 - D. Prone
- 5. What should be done immediately after an accidental needle stick?
 - A. Wash the affected area with soap and water
 - B. Apply a bandage to the area
 - C. Report to a supervisor
 - D. Get immediate medical attention

- 6. What should be done with samples if a delay in processing occurs due to laboratory backups?
 - A. Store at room temperature
 - **B. Send samples immediately**
 - C. Refrigerate until processed
 - D. Dispose of all samples
- 7. What size gauge set would be best for a hand draw?
 - A. 21 gauge
 - B. 23 gauge
 - C. 25 gauge
 - D. 20 gauge
- 8. In a laboratory setting, how should serums collected be handled for maximum integrity?
 - A. By refrigerating immediately
 - B. By centrifugation as soon as possible
 - C. By leaving at room temperature
 - D. By storing in a dark environment
- 9. What collection requires aseptic sterile techniques?
 - A. Glucose testing
 - **B. Blood Culture Collection**
 - **C. Complete Blood Count**
 - D. PT/PTT testing
- 10. What might be a consequence of improper blood sample transportation?
 - A. Increased serum volumes
 - B. Altered test results due to temperature variations
 - C. Reduced need for retesting
 - D. Enhanced coagulation times

Answers

- 1. B 2. B 3. A 4. B 5. A 6. B 7. B 8. B 9. B 10. B

Explanations

1. When should a sharps container be replaced?

- A. When it is half full
- B. When it is three-quarters full
- C. When it is overflowing
- D. When it is empty

A sharps container should typically be replaced when it is three-quarters full. This guideline is in place to ensure the safe handling and disposal of sharp instruments, such as needles and blades, which pose a risk for injury and infection. By replacing the container at this level, it allows for additional room for more sharps without the risk of overflowing, which can lead to accidents. Waiting until the container is overflowing is unsafe, as it may lead to improper disposal practices or cause the lid to be unsealable, thereby increasing the chances of a needle-stick injury. Additionally, replacing the container when it is still empty does not align with best practices, as that would not be using the container effectively and could lead to unnecessary waste of resources. Replacing the container halfway full could also increase risks; it does not provide enough space to accommodate the volume of sharp objects that may accumulate, leading back to unsafe practices. Thus, opting for replacement when the container is three-quarters full strikes a balance between ensuring safety and maximizing use.

2. When performing phlebotomy on a young, fearful child, what should you explain to them?

- A. The procedure will be quick and painless
- B. Explain in simple terms what will be done
- C. Not to worry
- D. That it's for their own good

When performing phlebotomy on a young, fearful child, explaining the procedure in simple terms is the most effective approach. Children may have difficulty understanding complex medical jargon, so using straightforward language helps them comprehend what is happening without causing additional fear or anxiety. This method not only reassures the child but also prepares them for the experience they will undergo. It may include describing the procedure, such as saying a small needle will be used to take a little blood, and emphasizing that it is a brief process. Providing clear and honest information respects the child's ability to understand and fosters trust. While other approaches might aim to reassure, they can fall short if the child remains uncertain about what to expect. For instance, saying the procedure will be 'quick and painless' may set unrealistic expectations, and telling them not to worry could come off as dismissive of their feelings. Explaining that it's for their own good might also be too abstract for a child, as they may struggle to see the benefit in the moment. Overall, using simple and direct explanations is the most appropriate practice in this scenario.

3. What should a patient inform the phlebotomist of before blood collection?

- A. Previous fainting episodes
- B. All food consumed the day prior
- C. If they have ever donated blood
- D. How much sleep they had last night

Informing the phlebotomist about previous fainting episodes is crucial for ensuring the safety and comfort of the patient during blood collection. This information allows the phlebotomist to take necessary precautions, such as ensuring the patient is seated comfortably or monitoring them closely during the procedure. Patients who have a history of fainting may require additional support or have specific strategies employed to minimize the risk of fainting during the blood draw. While the other options may contain relevant information to different aspects of patient care, they do not have the same immediate implications for the blood collection process. Knowing what food a patient consumed prior might be important for certain tests, but it is not universally required for every blood draw. Understanding a patient's history of blood donations can provide some context, but it is less critical than awareness of potential fainting risks. Lastly, while sleep can affect a patient's physical state, it is not as directly relevant to the immediate task of collecting blood as a history of fainting.

4. What is the most common position for blood drawing from a patient?

- A. Supine
- **B.** Sitting
- C. Standing
- D. Prone

The most common position for blood drawing from a patient is sitting. This position is preferred because it provides stability and security for the patient, minimizing the risk of fainting or falling during the procedure. Sitting allows for easy access to the antecubital area, which is typically the preferred site for venipuncture. When a patient is seated, they can adequately support their arm on a stable surface, such as the armrest of a chair or the phlebotomist's workstation. This positioning helps in keeping the veins palpable and also ensures greater comfort for the patient during the blood collection process. Other positions, such as supine or prone, could lead to complications or discomfort; for example, lying down may be necessary for patients who are particularly anxious or prone to fainting, but sitting generally offers the best approach for most patients. Standing is not ideal as it can increase the risk of dizziness or fainting during the procedure.

5. What should be done immediately after an accidental needle stick?

- A. Wash the affected area with soap and water
- B. Apply a bandage to the area
- C. Report to a supervisor
- D. Get immediate medical attention

The immediate response after an accidental needle stick involves washing the affected area with soap and water. This step is crucial because it helps to reduce the risk of infection and minimizes the potential for transmission of bloodborne pathogens. Proper hand hygiene is vital in healthcare settings, and thorough washing can effectively remove contaminants from the skin. While reporting to a supervisor and seeking medical attention are important steps that should follow, the first action taken should focus on cleaning the area to mitigate any immediate exposure risk. Applying a bandage may be necessary afterward, but it should only occur once the area has been properly cleaned. Therefore, initiating the process with washing the area sets the foundation for effective aftercare and risk management.

6. What should be done with samples if a delay in processing occurs due to laboratory backups?

- A. Store at room temperature
- **B. Send samples immediately**
- C. Refrigerate until processed
- D. Dispose of all samples

The best course of action when faced with a delay in processing samples due to laboratory backups is to refrigerate the samples until they can be processed. Refrigeration helps to preserve the integrity of the samples, slowing down any potential degradation or alteration that might occur if they were left at room temperature. For many types of specimens, particularly blood and other bodily fluids, proper temperature control is important to maintain viability and ensure accurate test results. Sending samples immediately when processing cannot be completed effectively does not account for the potential degradation during transport, especially if the samples require specific conditions that cannot be maintained outside the laboratory. Room temperature storage might also compromise the quality of the samples. Disposing of all samples is not a viable solution since it eliminates the possibility of obtaining crucial diagnostic information. Therefore, refrigerating samples is the correct action to take in order to ensure they remain viable for accurate testing later on.

7. What size gauge set would be best for a hand draw?

- A. 21 gauge
- B. 23 gauge
- C. 25 gauge
- D. 20 gauge

The most suitable gauge for a hand draw procedure is the 23 gauge. This size strikes a balance between being small enough to minimize discomfort for the patient, particularly in smaller veins often found in the hands, while still providing adequate blood flow for sample collection. A finer gauge needle like the 23 gauge is preferable for delicate or smaller veins since it reduces the risk of rolling or collapsing the vein during the draw. Additionally, a 23 gauge needle is less invasive, making it a better choice for patients who may have a lower tolerance for pain or are anxious about the procedure. In comparison, larger gauges, such as 20 or 21 gauge, might be too large for a hand draw, potentially causing greater discomfort and increasing the risk of complications like hematoma or vein trauma. Conversely, while the 25 gauge is even finer, it may not provide sufficient blood flow for the required sample volume and could result in a longer collection time, which is not ideal for clinical procedures. The 23 gauge, therefore, provides the optimal combination of patient comfort and effective blood collection for hand draws.

8. In a laboratory setting, how should serums collected be handled for maximum integrity?

- A. By refrigerating immediately
- B. By centrifugation as soon as possible
- C. By leaving at room temperature
- D. By storing in a dark environment

Handling serums in a laboratory setting for maximum integrity involves a crucial step: centrifugation as soon as possible after collection. This process is essential because it helps separate the serum from the cellular components of the blood. By spinning the sample at high speeds, the cells and clotting factors are settled at the bottom of the tube, allowing for the serum to be transferred without contamination. Centrifugation should be done relatively quickly after collection to prevent any changes in the biochemical composition of the serum. Delayed processing can lead to degradation or alteration of certain analytes due to ongoing metabolic processes or the effects of temperature and time. While refrigerating can be important for preserving some samples, it does not replace the necessity of centrifugation. Leaving serum at room temperature could compromise the sample's integrity by allowing for the continuation of cellular activity. Storing in a dark environment can be beneficial for sensitive materials, but it does not address the critical initial step of separating serum from cells. Thus, performing centrifugation promptly is the best practice to ensure that the serum maintains its integrity for accurate testing.

9. What collection requires aseptic sterile techniques?

- A. Glucose testing
- **B. Blood Culture Collection**
- C. Complete Blood Count
- D. PT/PTT testing

Blood culture collection requires aseptic sterile techniques because the primary goal is to detect the presence of microorganisms in the blood, which can indicate an infection. To ensure accurate test results and avoid contamination from skin flora or environmental bacteria, strict aseptic techniques must be employed. This includes using appropriate skin antiseptics such as iodine or chlorhexidine to cleanse the venipuncture site effectively, utilizing sterile equipment for the collection process, and following protocols that minimize exposure to contaminants during and after blood collection. By maintaining a sterile environment, the integrity of the samples is preserved, allowing for a precise diagnosis of potential bloodstream infections, which is critical for patient management and treatment. In contrast, other tests, such as glucose testing or complete blood count, do not have the same stringent requirements for sterility since they are not specifically looking for pathogens, but rather for blood constituents that are typically present without regard to contamination from microorganisms. Therefore, the need for aseptic techniques in blood culture collection is paramount in achieving reliable and valid results.

10. What might be a consequence of improper blood sample transportation?

- A. Increased serum volumes
- B. Altered test results due to temperature variations
- C. Reduced need for retesting
- D. Enhanced coagulation times

Improper blood sample transportation can significantly affect the integrity of the sample, leading to altered test results due to temperature variations. Blood samples are sensitive to temperature changes which can cause cellular degradation and biochemical reactions that do not reflect the patient's true physiological state at the time of collection. For instance, if a sample is exposed to excessive heat or cold, it can result in the breakdown of enzymes and metabolites, impacting the accuracy of tests such as electrolyte levels, liver function tests, or coagulation profiles. Maintaining the proper temperature is crucial for preserving the sample's integrity and ensuring reliable results. The other options do not accurately reflect the consequences of improper transportation. While increased serum volumes and enhanced coagulation times may occur in certain laboratory scenarios, they are not direct results of improper transportation practices. Additionally, reduced need for retesting would not normally be a consequence of improper blood sample handling; in fact, such practices often lead to an increased need for repeat testing to obtain accurate results.