

American Board of Cardiovascular Perfusion (ABCP) Board Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. After thoracotomy or sternotomy, lung and chest wall compliance will have a maximum decrease of what percentage after 6 days?**
 - A. 20%**
 - B. 15%**
 - C. 30%**
 - D. 5%**
- 2. Which electrolyte disturbance is NOT commonly associated with the effects of insulin resistance during surgery?**
 - A. Potassium**
 - B. Sodium bicarbonate**
 - C. Sodium**
 - D. Calcium**
- 3. What is the normal GFR per day?**
 - A. 80 L/day**
 - B. 120 L/day**
 - C. 150 L/day**
 - D. 180 L/day**
- 4. What component of the circulatory system allows for the exchange of nutrients and waste products?**
 - A. Arteries**
 - B. Veins**
 - C. Capillaries**
 - D. Lymphatics**
- 5. What do the chordae tendineae attach to in the heart?**
 - A. Heart valves and arteries**
 - B. Valve leaflets and papillary muscles**
 - C. Venous valves and endocardium**
 - D. Myocardial cells and atrial septum**

6. Nutrients and waste products from the body are transported to and from tissues by which system?

- A. Respiratory**
- B. Circulatory**
- C. Digestive**
- D. Endocrine**

7. Which condition can precipitate hepatic dysfunction during prolonged perfusion?

- A. High blood pressure**
- B. Low oxygen delivery**
- C. Excessive fluid administration**
- D. Rapid cooling**

8. The Berlin heart is an example of a _____ device.

- A. Intracorporeal**
- B. Paracorporeal**
- C. Extracorporeal**
- D. Perioperative**

9. Treatment for blood transfusion reaction should include which modalities?

- A. Administration of Benzodiazepine, nitroprusside, and hydroxyethyl starch solution**
- B. Administration of platelets, FFP, and Cryo**
- C. Administration of steroids, diuretics, and heparin**
- D. Administration of vasopressors, antibiotics, and Cryo**

10. What equation best corresponds to cardiac output during cardiac catheterization?

- A. $CO = (O_2 \text{ consumption}) / (\text{arterial } O_2 \text{ content} - \text{venous } O_2 \text{ content})$**
- B. $CO = BSA \times HR$**
- C. $CO = \text{Stroke Volume} \times \text{Heart Rate}$**
- D. $CO = (\text{Blood Volume}) / (\text{Time})$**

Answers

SAMPLE

1. C
2. A
3. D
4. C
5. B
6. B
7. B
8. B
9. C
10. A

SAMPLE

Explanations

SAMPLE

1. After thoracotomy or sternotomy, lung and chest wall compliance will have a maximum decrease of what percentage after 6 days?

- A. 20%**
- B. 15%**
- C. 30%**
- D. 5%**

The significant reduction in lung and chest wall compliance following thoracotomy or sternotomy is essential for understanding the physiological implications of surgical procedures on the thoracic cavity. After a thoracotomy or sternotomy, damage to the thoracic structure, including the muscles and tissues surrounding the lungs, can cause alterations in their ability to expand and contract effectively. Research indicates that after approximately six days following a thoracotomy or sternotomy, the maximum decrease in lung and chest wall compliance can reach around 30%. This decline is attributed to several factors, including pain, inflammation, and the accumulation of fluids in the pleural space, which can impede normal lung function and chest wall mechanics. Additionally, the surgical procedure itself may impact the integrity of the thoracic wall and the diaphragm, further contributing to reduced compliance. Understanding this significant decrease in compliance is crucial for healthcare providers, as it emphasizes the importance of closely monitoring respiratory function and implementing appropriate interventions to enhance pulmonary rehabilitation and prevent complications associated with decreased lung function.

2. Which electrolyte disturbance is NOT commonly associated with the effects of insulin resistance during surgery?

- A. Potassium**
- B. Sodium bicarbonate**
- C. Sodium**
- D. Calcium**

Insulin resistance during surgery affects various electrolyte balances in the body, primarily involving potassium, sodium, and calcium disturbances. However, potassium is often associated with insulin and glucose metabolism due to its relationship with insulin signaling and cellular uptake. Insulin promotes the uptake of potassium into cells, and disturbances in this mineral may be seen during hyperglycemic states or due to the stress of surgery. On the other hand, sodium bicarbonate's usage in surgery, particularly when treating acidosis, does not have a direct link to insulin resistance. The body's management of bicarbonate during surgical stress is more related to acid-base status rather than insulin signaling. Sodium itself can be influenced by fluid shifts and changes in renal function during surgery but is not specifically linked to insulin resistance in the same manner as potassium and calcium. Calcium levels might fluctuate during surgery, affected by hormonal changes and the physiologic demands of the body, but like sodium, calcium imbalance does not strongly correlate with the effects of insulin resistance. Thus, given the context of electrolyte disturbances specifically tied to insulin resistance, sodium bicarbonate is least commonly associated with these effects during surgical procedures.

3. What is the normal GFR per day?

- A. 80 L/day
- B. 120 L/day
- C. 150 L/day
- D. 180 L/day**

The normal glomerular filtration rate (GFR) per day for a healthy adult is approximately 180 liters. The kidneys play a crucial role in filtering blood, and the GFR is a measure of how well they are functioning. In practical terms, this means that the kidneys filter blood through the glomeruli, allowing waste and excess substances to be excreted while retaining important components like proteins and blood cells. A GFR of 180 liters per day translates to about 125 milliliters per minute in adult humans. This filtration rate is essential for homeostasis, helping regulate fluid balance, electrolytes, and waste removal. Understanding the normal range helps healthcare providers assess kidney function and identify potential issues. Lower figures, such as 80, 120, and 150 liters, do not reflect the typical daily output of glomerular filtration, as they underestimate the actual physiological functioning of the kidneys under normal circumstances. By recognizing the correct value, one can better appreciate the kidneys' capacity and the importance of maintaining kidney health in overall well-being.

4. What component of the circulatory system allows for the exchange of nutrients and waste products?

- A. Arteries
- B. Veins
- C. Capillaries**
- D. Lymphatics

Capillaries are the smallest blood vessels in the circulatory system and play a crucial role in the exchange of nutrients and waste products between blood and tissues. Their thin walls, composed of a single layer of endothelial cells, facilitate diffusion and allow for the easy transfer of oxygen, carbon dioxide, glucose, hormones, and metabolic waste. While arteries are responsible for carrying oxygenated blood away from the heart and veins return deoxygenated blood to the heart, these vessels do not directly participate in the exchange of materials. Lymphatics, on the other hand, primarily deal with the transportation of lymph, proteins, and excess interstitial fluid rather than the direct exchange of nutrients and waste within tissues. Hence, capillaries are uniquely structured to fulfill this essential function in the circulatory system.

5. What do the chordae tendineae attach to in the heart?

- A. Heart valves and arteries
- B. Valve leaflets and papillary muscles**
- C. Venous valves and endocardium
- D. Myocardial cells and atrial septum

The chordae tendineae are fibrous strings that connect the valve leaflets of the heart, specifically the atrioventricular (AV) valves, to the papillary muscles located in the ventricles. These structures play a crucial role in maintaining the proper function of the AV valves during the cardiac cycle. When the ventricles contract, the papillary muscles also contract, pulling on the chordae tendineae. This tension prevents the valve leaflets from prolapsing or inverting into the atria, ensuring that blood flows in the correct direction during ventricular contraction. Understanding the function of the chordae tendineae is vital in grasping the mechanics of heart valve operation and the overall dynamics of blood flow through the heart. The connection between the valve leaflets and the papillary muscles reveals how structural components of the heart work in concert to promote efficient circulation, especially during the high-pressure events of the cardiac cycle.

6. Nutrients and waste products from the body are transported to and from tissues by which system?

- A. Respiratory
- B. Circulatory**
- C. Digestive
- D. Endocrine

The circulatory system is responsible for the transportation of nutrients and waste products to and from tissues throughout the body. This system includes the heart, blood vessels, and blood, and it plays a crucial role in maintaining homeostasis. Nutrients absorbed from food are carried by the blood from the digestive tract to various tissues where they are utilized for energy, growth, and repair. In parallel, waste products produced by cellular metabolism, such as carbon dioxide and urea, are transported from the tissues to organs like the lungs and kidneys, where they can be expelled from the body. This constant flow facilitates the exchange necessary for cellular functions and overall health. In contrast, the respiratory system primarily manages the exchange of gases (oxygen and carbon dioxide) between the body and the environment, rather than transporting nutrients or waste across tissues. The digestive system focuses on the breakdown and absorption of food rather than the distribution of nutrients and wastes throughout the body. The endocrine system primarily regulates bodily functions through hormone release but does not facilitate the transport of nutrients and waste products as the circulatory system does.

7. Which condition can precipitate hepatic dysfunction during prolonged perfusion?

- A. High blood pressure**
- B. Low oxygen delivery**
- C. Excessive fluid administration**
- D. Rapid cooling**

Hepatic dysfunction during prolonged perfusion can be significantly influenced by low oxygen delivery. The liver is highly dependent on an adequate supply of oxygen to maintain its metabolic functions and detoxification processes. During perfusion, if the oxygen delivery to the liver is compromised—due to factors like low blood flow or inadequate oxygenation in the circuit—this can lead to hypoxic injury at the cellular level. The liver's architecture is particularly sensitive to low oxygen levels, and hepatocytes (liver cells) can begin to fail if they do not receive sufficient oxygen. This hypoxia can result in the accumulation of metabolic waste products, impaired liver function, and eventually hepatic dysfunction. Therefore, maintaining optimal oxygen delivery is critical to preserving liver function during cardiovascular procedures requiring perfusion. High blood pressure and excessive fluid administration, while potentially complicating factors, are not direct causes of hepatic dysfunction in the same way that low oxygen delivery is. Rapid cooling could affect the liver, but it primarily impacts overall metabolism and organ perfusion rather than acting as a direct precipitating factor for hepatic dysfunction in the same manner as low oxygenation.

8. The Berlin heart is an example of a _____ device.

- A. Intracorporeal**
- B. Paracorporeal**
- C. Extracorporeal**
- D. Perioperative**

The Berlin Heart is a well-known example of a paracorporeal device. Paracorporeal devices are designed to be placed outside of the body but are connected to internal circulatory structures. In the case of the Berlin Heart, it functions as a ventricular assist device (VAD) that supports patients with severe heart failure by helping to pump blood from the heart to the rest of the body, while being situated outside the patient. The design of paracorporeal devices typically allows for easier implantation and may provide advantages in terms of maintenance and can be suitable for use as a bridge to transplant or recovery, as in the case of patients awaiting heart transplants. The use of this type of device underscores the importance of supporting cardiac function while maintaining a connection to the circulatory system, thereby enhancing patient management options in critical care settings. In contrast, other types of devices such as intracorporeal are implanted entirely within the body and do not have external components. Extracorporeal devices, like some heart-lung machines, are used temporarily outside the body but in a different context, primarily during procedures like open-heart surgery. Perioperative refers to the period surrounding a surgical procedure, rather than a type of device

9. Treatment for blood transfusion reaction should include which modalities?

- A. Administration of Benzodiazepine, nitroprusside, and hydroxyethyl starch solution
- B. Administration of platelets, FFP, and Cryo
- C. Administration of steroids, diuretics, and heparin**
- D. Administration of vasopressors, antibiotics, and Cryo

The treatment for a blood transfusion reaction is centered around managing the symptoms and resolving complications that arise from the reaction. Administration of steroids, diuretics, and heparin is particularly relevant in this context. Steroids are commonly administered to mitigate the inflammatory response that occurs during a transfusion reaction, especially in cases like allergic reactions or hemolytic reactions, where there is significant immune activation. They help to reduce inflammation and alleviate symptoms. Diuretics are important to administer in cases of hemolytic reactions, where there may be a risk of acute kidney injury due to hemoglobinuria. By promoting urine output, diuretics assist in flushing out nephrotoxic substances that can accumulate and cause further damage to the kidneys. Heparin is sometimes utilized in the management of transfusion reactions to prevent coagulation-related complications, especially if there is a risk of disseminated intravascular coagulation (DIC) that can occur following certain types of transfusion reactions. In contrast, other options provided do not specifically address the common protocols or best practices for managing blood transfusion reactions. Therefore, the combination of steroids, diuretics, and heparin creates an effective treatment strategy for the various possible complications that may arise during a transfusion.

10. What equation best corresponds to cardiac output during cardiac catheterization?

- A. $CO = (O_2 \text{ consumption}) / (\text{arterial } O_2 \text{ content} - \text{venous } O_2 \text{ content})$**
- B. $CO = BSA \times HR$
- C. $CO = \text{Stroke Volume} \times \text{Heart Rate}$
- D. $CO = (\text{Blood Volume}) / (\text{Time})$

The equation that best corresponds to cardiac output during cardiac catheterization is associated with the measurement of oxygen consumption and the difference between arterial and venous oxygen content. Cardiac output is defined as the amount of blood the heart pumps through the circulatory system in a minute and can be assessed effectively using this formula during cardiac catheterization. In clinical practice, particularly during catheterization, it's important to evaluate the efficiency of the heart and how well it delivers oxygenated blood to the tissues. The formula $CO = (O_2 \text{ consumption}) / (\text{arterial } O_2 \text{ content} - \text{venous } O_2 \text{ content})$ demonstrates how oxygen levels in the blood correlate with cardiac efficiency by taking into account how much oxygen the body is utilizing ($O_2 \text{ consumption}$) and the difference in oxygen content between arterial and venous blood, providing insight into the heart's pumping ability and oxygen delivery. This method aligns closely with the principles of Fick's method of measuring cardiac output, which is foundational in assessing heart function and identifying issues such as heart failure, where oxygen transport may be compromised. While other formulas for cardiac output, such as $CO = \text{Stroke Volume} \times \text{Heart Rate}$ or $CO = BSA \times HR$, are valid measures, the relation of oxygen utilization during catheterization provides a more accurate assessment of cardiac output.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://abcpboard.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE