
Algorithms Analysis
Practice Test (Sample)
Study Guide

Everything you need from our exam experts!

Sample study guide. For the full version with hundreds of questions, visit:
https://algorithmsanalysis.examzify.com

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any
means, graphic, electronic, or mechanical, including photocopying,
recording, web distribution, taping, or by any information storage retrieval
system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate,
complete, and timely information about this product from reliable sources.

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions 1

SA
M

PLE

Table of Contents
Copyright 1...
Table of Contents 2..
Introduction 3..
How to Use This Guide 4..
Questions 5...
Answers 8...
Explanations 10..
Next Steps 16...

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions 2

SA
M

PLE

IntroductionIntroduction
Preparing for a certification exam can feel overwhelming, but with the
right tools, it becomes an opportunity to build confidence, sharpen your
skills, and move one step closer to your goals. At Examzify, we believe
that effective exam preparation isn’t just about memorization, it’s about
understanding the material, identifying knowledge gaps, and building
the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you’re preparing for a licensing exam, professional
certification, or entry-level qualification, this book offers structured
practice to reinforce key concepts. You’ll find a wide range of
multiple-choice questions, each followed by clear explanations to help
you understand not just the right answer, but why it’s correct.

The content in this guide is based on real-world exam objectives and
aligned with the types of questions and topics commonly found on
official tests. It’s ideal for learners who want to:

• Practice answering questions under realistic conditions,
• Improve accuracy and speed,
• Review explanations to strengthen weak areas, and
• Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but
alongside other resources like flashcards, textbooks, or hands-on
training. For best results, we recommend working through each
question, reflecting on the explanation provided, and revisiting the
topics that challenge you most.

Remember: successful test preparation isn’t about getting every question
right the first time, it’s about learning from your mistakes and improving
over time. Stay focused, trust the process, and know that every page you
turn brings you closer to success.

Let’s begin.

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions 3

SA
M

PLE

How to Use This GuideHow to Use This Guide
This guide is designed to help you study more effectively and approach
your exam with confidence. Whether you're reviewing for the first time
or doing a final refresh, here’s how to get the most out of your Examzify
study guide:
1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what
you need to focus on. Your goal is to identify knowledge gaps early.
2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 – 45 minutes).
Review a handful of questions, reflect on the explanations.
3. Learn from the Explanations

After answering a question, always read the explanation, even if you got
it right. It reinforces key points, corrects misunderstandings, and
teaches subtle distinctions between similar answers.
4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions.
Revisit these regularly and track improvements over time.
5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without
pausing. Set a timer and simulate test-day conditions to build confidence
and time management skills.
6. Repeat and Review

Don’t just study once, repetition builds retention. Re-attempt questions
after a few days and revisit explanations to reinforce learning. Pair this
guide with other Examzify tools like flashcards, and digital practice tests
to strengthen your preparation across formats.

There’s no single right way to study, but consistent, thoughtful effort
always wins. Use this guide flexibly, adapt the tips above to fit your pace
and learning style. You've got this!

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions 4

SA
M

PLE

Questions

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions 5

SA
M

PLE

1. Given the function T(n) = T(n/2) + 1, what does this imply
about its complexity?
A. Linear time complexity
B. Constant time complexity
C. Logarithmic time complexity
D. Quadratic time complexity

2. Breadth first search primarily does what in graph
traversal?
A. Scans each incident node along with its children
B. Scans all incident edges before moving to other node
C. Is the same as backtracking
D. Scans all the nodes in random order

3. In linear programming, must both constraints and
optimization criteria be linear functions?
A. True
B. False
C. Always
D. Only in special cases

4. What is the space complexity of QuickSort in its average
case?
A. O(n)
B. O(log n)
C. O(n log n)
D. O(1)

5. True/False: A tree is a type of graph that contains cycles.
A. True
B. False

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions 6

SA
M

PLE

6. What is the big-O complexity of the expression represented
by the second line on the left?
A. O(n)
B. O(log n)
C. O(2^n)
D. O(n^2)

7. What does it imply when an algorithm has a space
complexity of O(1)?
A. The algorithm requires minimal space regardless of input

size
B. The space requirement grows linearly with input size
C. The algorithm cannot execute without additional memory
D. The algorithm is not efficient

8. Which of the following typically characterizes
divide-and-conquer strategies?
A. They exclusively use iteration
B. They break a problem into independent smaller problems
C. They solely rely on brute force methods
D. They cannot be used for sorting

9. What is the total number of fundamental instructions
executed by the routine if n = 4?
A. 8
B. 10
C. 12
D. 4 + 2n

10. How can you classify a problem as NP-complete?
A. If it has no solution
B. If it can be solved in polynomial time
C. If it is in NP and every problem in NP can be reduced to it in

polynomial time
D. If it can be solved using brute force

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions 7

SA
M

PLE

Answers

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions 8

SA
M

PLE

1. C
2. B
3. B
4. B
5. B
6. C
7. A
8. B
9. D
10. C

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions 9

SA
M

PLE

Explanations

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions 10

SA
M

PLE

1. Given the function T(n) = T(n/2) + 1, what does this imply
about its complexity?
A. Linear time complexity
B. Constant time complexity
C. Logarithmic time complexity
D. Quadratic time complexity

The function T(n) = T(n/2) + 1 describes a recurrence relation where the problem size
reduces by half with each recursive call, and there is a constant amount of additional
work done (which is the +1). This pattern is indicative of logarithmic growth. To analyze
the complexity, we can apply the Master Theorem or simply observe the behavior of the
recurrence. Starting with T(n), you can see: 1. At the initial step, we have T(n). 2. The
next call is T(n/2), which adds a constant 1. 3. The following step would be T(n/4), adding
another constant 1. 4. This process continues until n is reduced to 1. If we continue this
pattern, each level of the recurrence contributes a constant amount of work, and we
effectively halve the problem size at each step. The number of steps taken to reduce n to
1 will be log₂(n). Each of these steps contributes a constant amount of additional work.
This results in the overall time complexity being proportional to the number of steps
taken in the recurrence, which is log(n). Therefore, the function T(n) grows
logarithmically with respect to n, leading to a logarith

2. Breadth first search primarily does what in graph
traversal?
A. Scans each incident node along with its children
B. Scans all incident edges before moving to other node
C. Is the same as backtracking
D. Scans all the nodes in random order

In the context of graph traversal, breadth-first search (BFS) explores the graph level by
level, meaning that it examines each node and all of its children (or direct neighbors)
systematically before moving on to the next level of nodes. When executing BFS, the
algorithm utilizes a queue to keep track of nodes that are pending examination. This
means that each node is processed in the order they are discovered, and all nodes
connected to the current node (its incident edges) are explored before moving on to
nodes that are at the next level of the graph. The focus of BFS is to ensure that all nodes
at one depth are visited before any nodes at the subsequent depth, making it a very
structured traversal method. This differs from random exploration or depth-focused
searches like backtracking, which do not prioritize visiting nodes in a level-wise manner.
Thus, the defining characteristic of BFS is its thorough examination of all incident edges
of a node before transitioning to new nodes, ensuring that the entire breadth of the
current layer is scanned. The other options suggest different approaches or
characteristics not inherent to BFS, underscoring the uniqueness of its methodology.

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions 11

SA
M

PLE

3. In linear programming, must both constraints and
optimization criteria be linear functions?
A. True
B. False
C. Always
D. Only in special cases

In linear programming, the defining characteristic is that both the constraints and the
objective function are linear functions. Therefore, the statement that both constraints
and optimization criteria must be linear is essential to the definition of linear
programming. If either the constraints or the objective function were non-linear, it would
not fit the classification of linear programming, but rather another type of mathematical
optimization problem. Considering the provided context, it is evident that while linear
constraints and an objective function are the norm in linear programming, there can be
cases where either element is not strictly linear. For instance, some optimization
problems may involve non-linear functions, thereby transitioning them into the realm of
non-linear programming. Hence, the assertion that it’s not a requirement for both
components to be linear in all scenarios aligns with the understanding of linear
programming's flexible nature, allowing certain variations in problem formulation.
Thus, stating that it is false to maintain that both constraints and optimization criteria
must be linear is appropriate for reflecting the broader possibilities outside the stringent
structure of linear programming.

4. What is the space complexity of QuickSort in its average
case?
A. O(n)
B. O(log n)
C. O(n log n)
D. O(1)

In the average case for QuickSort, the space complexity is determined primarily by the
recursion stack during the sorting process. QuickSort works by selecting a "pivot"
element and partitioning the array into two halves, which are then sorted independently.
In the average case, the pivot usually divides the array into two roughly equal parts. This
results in a logarithmic depth of recursion, as each recursive call handles part of the
array. Specifically, for an array of size n, you could expect about log(n) levels of recursive
calls (assuming balanced partitions). At each level of recursion, space is used on the
stack for managing function calls. Since the maximum depth of the recursion stack
corresponds to the logarithm of the size of the input data, the average space complexity
for QuickSort is O(log n). This understanding is based on the method of partitioning and
the nature of recursive function calls in QuickSort, which permits efficient use of stack
space while sorting. The other options reflect either incorrect assessments of recursion
depth or total space usage through other interpretations, which do not apply to the
average case behavior of QuickSort.

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions 12

SA
M

PLE

5. True/False: A tree is a type of graph that contains cycles.
A. True
B. False

A tree is indeed a type of graph, and by definition, it is a connected acyclic graph. This
means that a tree does not contain any cycles. Every two vertices in a tree are connected
by exactly one simple path, ensuring that no loops or cycles exist within the structure.
Additionally, trees have a hierarchical structure with a single root node, and they are
characterized by having \(n\) vertices and \(n-1\) edges, where \(n\) represents the
number of nodes in the tree. In contrast, the presence of cycles would contradict the
basic properties of a tree, making the assertion that a tree contains cycles false. This
fundamental characteristic distinguishes trees from other types of graphs, such as
directed or undirected graphs, which may contain cycles. Understanding this distinction
is essential in graph theory and algorithms that utilize tree structures.

6. What is the big-O complexity of the expression represented
by the second line on the left?
A. O(n)
B. O(log n)
C. O(2^n)
D. O(n^2)

To determine the big-O complexity of an expression, it is essential to analyze how the
time (or space) required for the execution of that expression grows with respect to the
input size 'n'. Specifically, when assessing an algorithm's complexity, we focus on the
term that grows the fastest as 'n' increases, which often identifies the upper bounds on
the growth rate. If the expression in question signifies an exponential growth,
particularly in the form of 2 raised to the power of 'n', it indicates that the time or space
complexity is indeed O(2^n). Such complexities arise in algorithms that solve problems
by evaluating all possible combinations of inputs, particularly seen in recursive
algorithms addressing combinatorial issues, like generating power sets or solving the
Traveling Salesman Problem via brute force. In general, exponential time complexities
are substantially higher and often unmanageable for large inputs, as the number of
operations doubles with each additional element. This exceptional growth is what sets
O(2^n) apart from polynomial or logarithmic complexities, which grow at a significantly
slower rate. Understanding the context—if the expression arises from a recursive
function where each call spawns two further calls (like the Fibonacci sequence
implementation without memoization)—it supports the notion that the growth of

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions 13

SA
M

PLE

7. What does it imply when an algorithm has a space
complexity of O(1)?
A. The algorithm requires minimal space regardless of input

size
B. The space requirement grows linearly with input size
C. The algorithm cannot execute without additional memory
D. The algorithm is not efficient

When an algorithm has a space complexity of O(1), it indicates that the algorithm
requires a constant amount of memory space regardless of the size of the input. This
means that no matter how large or small the input data is, the space consumed by the
algorithm remains the same. This property is particularly advantageous because it
suggests that the algorithm is efficient in terms of its memory usage, making it suitable
for environments with constrained memory resources. For example, if an algorithm
processes an array but only uses a fixed number of variables to keep track of indices or
sums during its computation, its space complexity would be O(1). This ensures that the
algorithm's performance is not hindered by the size of the input data, allowing for
predictable and efficient memory usage. In contrast, the other options would imply
variable or inefficient space utilization which is not the case with O(1) complexity.

8. Which of the following typically characterizes
divide-and-conquer strategies?
A. They exclusively use iteration
B. They break a problem into independent smaller problems
C. They solely rely on brute force methods
D. They cannot be used for sorting

The correct choice accurately characterizes divide-and-conquer strategies by focusing on
how these methods approach problem-solving. Divide-and-conquer involves breaking a
larger problem into smaller, independent subproblems that can be solved individually.
This is a fundamental goal in many algorithms that employ this strategy, as it allows for a
more manageable way to tackle complex problems. For instance, in sorting algorithms
like Merge Sort and Quick Sort, the initial problem of sorting a list is divided into smaller
segments that are sorted independently. Once each segment is sorted, these smaller
solutions are combined to form the overall solution to the original problem. This
characteristic enables the efficiency and effectiveness seen in various divide-and-conquer
algorithms, often improving performance through parallelism and reducing the time
complexity in comparison to solving the problem directly without such a decomposition.
In contrast, the other options either describe strategies that do not apply to
divide-and-conquer or misunderstand its fundamental nature. Options that suggest
exclusive reliance on iteration, brute force methods, or imply limitations on the types of
problems that can be solved through this strategy do not align with the essential
principles of divide-and-conquer.

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions 14

SA
M

PLE

9. What is the total number of fundamental instructions
executed by the routine if n = 4?
A. 8
B. 10
C. 12
D. 4 + 2n

The total number of fundamental instructions executed by the routine when \(n = 4 \)
can be derived from analyzing the structure of the routine itself. When an algorithm or
code snippet is expressed as \(4 + 2n \), it indicates the number of operations depends
linearly on the size \(n \). For \(n = 4 \), substituting this value into the expression
yields: \[4 + 2(4) = 4 + 8 = 12 \] Thus, when \(n = 4 \), the total number of fundamental
instructions executed is 12, confirming that the provided expression accurately captures
the pattern of execution within the routine based on varying values of \(n \). This type
of expression often arises in algorithms that entail a constant number of operations in
addition to a linear scaling with \(n \) — for instance, loops that execute a fixed number
of times for each element processed or a combination of sequential and iterative tasks.
This clarity in understanding how the formula describes the relationship between the
input size and operations is key to analyzing algorithm efficiency.

10. How can you classify a problem as NP-complete?
A. If it has no solution
B. If it can be solved in polynomial time
C. If it is in NP and every problem in NP can be reduced to it in

polynomial time
D. If it can be solved using brute force

To classify a problem as NP-complete, it is essential to determine two specific criteria.
First, the problem must be in the class NP, which means that any proposed solution can
be verified in polynomial time. Second, the problem must satisfy the condition that every
problem in NP can be reduced to it in polynomial time. This reduction effectively shows
that if we can find a polynomial-time solution for the NP-complete problem, then we can
use that solution to solve all problems in NP within polynomial time as well. This
classification is crucial because it helps in understanding the complexity of various
computational problems. If a new problem is shown to be NP-complete, it can be
interpreted as being as hard as the hardest problems in NP, indicating that no
polynomial-time solution is known for it, and finding one would be a significant
breakthrough in computer science. The other options do not accurately represent the
criteria for NP-completeness. For instance, a problem having no solution does not help
classify it as NP-complete; in fact, many NP-complete problems have solutions that can
be verified. Likewise, a problem that can be solved in polynomial time is classified as
being in P, not NP-complete. Finally, any problem solvable by brute force does not

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions 15

SA
M

PLE

Next StepsNext Steps
Congratulations on reaching the final section of this guide. You've taken
a meaningful step toward passing your certification exam and advancing
your career.

As you continue preparing, remember that consistent practice, review,
and self-reflection are key to success. Make time to revisit difficult
topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we’d love
to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

https://algorithmsanalysis.examzify.com

We wish you the very best on your exam journey. You've got this!

Sample study guide, visit https://algorithmsanalysis.examzify.com
for the full version with hundreds of practice questions v-1769476794 | Page 16

SA
M

PLE

