

Algebra Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

1. How many subsets does a set of 3 elements have?

- A. 8
- B. 6
- C. 16
- D. 4

2. What is the solution to the equation $x^2 = 16$?

- A. $x = 4$
- B. $x = -4$
- C. $x = 0$
- D. $x = 4 \text{ or } -4$

3. What is the factorization of the polynomial $x^3 - 27$?

- A. $(x - 3)(x^2 + 3x + 9)$
- B. $(x + 3)(x^2 - 3x + 9)$
- C. $(x - 3)(x^2 - 3x - 9)$
- D. $(x + 3)(x^2 + 3x + 9)$

4. How do you write the equation of a line in point-slope form through point $(2,3)$ with slope 4?

- A. $y - 4 = 4(x - 2)$
- B. $y - 3 = 4(x - 2)$
- C. $y - 2 = 3(x - 4)$
- D. $y + 3 = 4(x + 2)$

5. If $3^{-2} = 1/x$, what is the value of x?

- A. 9
- B. 3
- C. $1/3$
- D. $1/9$

6. Evaluate the expression $y \div x$ for $y = -4$ and $x = 16$. What is the result?

- A. $-1/4$
- B. $1/4$
- C. -4
- D. 4

7. What is the simplified form of $7 - 2(5 - 2x)$?

- A. $10x - 3$
- B. $4x - 3$
- C. $2x + 3$
- D. $4x + 3$

8. What is the value of $4(b - 4)^2 + 15$ for $b = 5$?

- A. 15
- B. 27
- C. 19
- D. 31

9. How is the distance between two points (x_1, y_1) and (x_2, y_2) calculated?

- A. Distance = $|x_2 - x_1| + |y_2 - y_1|$
- B. Distance = $(x_2 - x_1) + (y_2 - y_1)$
- C. Distance = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
- D. Distance = $(x_2 - x_1)^2 + (y_2 - y_1)^2$

10. What is the simplified value of the expression $-2[(-3 - 2) - 2(-2 + m)]$ when $m = 1$?

- A. -20
- B. 20
- C. -30
- D. 10

Answers

SAMPLE

- 1. A**
- 2. D**
- 3. A**
- 4. B**
- 5. D**
- 6. A**
- 7. B**
- 8. C**
- 9. C**
- 10. A**

SAMPLE

Explanations

SAMPLE

1. How many subsets does a set of 3 elements have?

- A. 8**
- B. 6**
- C. 16**
- D. 4**

To determine the number of subsets in a set with a specific number of elements, you can use the formula (2^n) , where (n) represents the number of elements in the set. In this case, since there are 3 elements, you would calculate (2^3) . Performing the calculation: $[2^3 = 2 \times 2 \times 2 = 8]$ This means that a set with 3 elements has a total of 8 subsets. It includes various combinations: the empty set, subsets with one element, subsets with two elements, and the subset that includes all three elements. Therefore, the correct answer, which reflects the total number of subsets that can be formed from a set of 3 elements, is indeed 8.

2. What is the solution to the equation $x^2 = 16$?

- A. $x = 4$**
- B. $x = -4$**
- C. $x = 0$**
- D. $x = 4 \text{ or } -4$**

To solve the equation $x^2 = 16$, we begin by taking the square root of both sides. The square root of 16 is 4; however, it is important to remember that when solving an equation involving a square, there are typically two solutions: a positive solution and a negative solution. This is because both 4^2 and $(-4)^2$ equal 16. Thus, we derive that x can be either 4 or -4. Therefore, the complete solution to the equation is $x = 4$ or $x = -4$. This encompasses both possible values that satisfy the original equation, confirming that D is indeed the correct answer. This understanding underlines the fundamental principle that equations involving squares have both positive and negative roots.

3. What is the factorization of the polynomial $x^3 - 27$?

- A. $(x - 3)(x^2 + 3x + 9)$**
- B. $(x + 3)(x^2 - 3x + 9)$**
- C. $(x - 3)(x^2 - 3x - 9)$**
- D. $(x + 3)(x^2 + 3x + 9)$**

To understand how to factor the polynomial $(x^3 - 27)$, it is helpful to recognize that this expression is a difference of cubes. The general form for factoring a difference of cubes is: $[a^3 - b^3 = (a - b)(a^2 + ab + b^2)]$ In this case, we can identify (a) as (x) and (b) as (3) because (27) can be expressed as (3^3) . Therefore, we have: $[x^3 - 3^3 = (x - 3)(x^2 + x \cdot 3 + 3^2)]$ Now, let's break it down: 1. The first term is $(x - 3)$. 2. Next, for the second term $(x^2 + x \cdot 3 + 3^2)$, we compute it: - The middle term becomes $(3x)$. - The last term is (9) . As a result, we arrive at: $[x^3 - 27 = (x - 3)(x^2 + 3x + 9)]$

4. How do you write the equation of a line in point-slope form through point (2,3) with slope 4?

- A. $y - 4 = 4(x - 2)$
- B. $y - 3 = 4(x - 2)$**
- C. $y - 2 = 3(x - 4)$
- D. $y + 3 = 4(x + 2)$

To write the equation of a line in point-slope form, you can use the formula: $y - y_1 = m(x - x_1)$ In this formula, (x_1, y_1) represents a specific point on the line, and m represents the slope of the line. Here, the given point is $(2, 3)$, which means $x_1 = 2$ and $y_1 = 3$. The slope given is 4, so $m = 4$. Substituting these values into the point-slope formula, we have: $y - 3 = 4(x - 2)$ This shows that for any value of x , the corresponding y can be found using the line that passes through the point $(2, 3)$ with a slope of 4. The other choices do not follow the point-slope form correctly using the given point and slope. For instance, using $y - 4$ in option A mistakenly uses a y -coordinate of 4 instead of 3. Similarly, option C does not use the correct point at all, and option D shifts both the x and y coordinates incorrectly. Therefore, the choice utilizing $y - 3$ and the defined slope of

5. If $3^{-2} = 1/x$, what is the value of x ?

- A. 9
- B. 3
- C. $1/3$
- D. $1/9$**

To solve the equation $3^{-2} = \frac{1}{x}$, we first need to evaluate 3^{-2} . The negative exponent indicates that we are dealing with the reciprocal of 3^2 . Thus, we can rewrite 3^{-2} as: $\frac{1}{3^2} = \frac{1}{9}$ Calculating 3^2 gives us 9. Therefore, 3^{-2} can be expressed as: $\frac{1}{9} = \frac{1}{x}$ Now we have the equation: $\frac{1}{9} = \frac{1}{x}$ This indicates that x must equal 9 since both fractions are equal to each other in their reciprocal forms. To isolate x , we can cross-multiply or simply recognize that for the two fractions to be equal, the denominators must be the same. Thus, we deduce: $x = 9$ This aligns with the calculation showing that when we apply the property of exponents correctly, the

6. Evaluate the expression $y \div x$ for $y = -4$ and $x = 16$. What is the result?

- A. -1/4**
- B. 1/4**
- C. -4**
- D. 4**

To evaluate the expression $y \div x$ with the given values $y = -4$ and $x = 16$, we can substitute these values into the expression. Starting with: $y \div x = -4 \div 16$. When dividing, we can think of the operation as follows: $-4 \div 16 = -\frac{4}{16}$. Next, we simplify the fraction $-\frac{4}{16}$. The fraction can be reduced by dividing both the numerator and the denominator by their greatest common divisor, which is 4: $-\frac{4 \div 4}{16 \div 4} = -\frac{1}{4}$. Thus, the result of the expression $y \div x$ is $-\frac{1}{4}$. This outcome aligns perfectly with the answer choice that specifies $-\frac{1}{4}$ as the result. Understanding the process of simplifying fractions and performing division with negative numbers is essential here, and it leads us to the correct answer in this case.

7. What is the simplified form of $7 - 2(5 - 2x)$?

- A. $10x - 3$**
- B. $4x - 3$**
- C. $2x + 3$**
- D. $4x + 3$**

To simplify the expression $7 - 2(5 - 2x)$, we start by distributing the -2 across the terms inside the parentheses. This means we will multiply -2 by both 5 and $-2x$. When we calculate $-2 * 5$, we get -10 . For $-2 * -2x$, multiplying two negative numbers results in a positive value, so we have $+4x$. Now, substituting these results back into the expression, we get: $7 - 10 + 4x$. Next, we combine like terms. The constants in the expression are 7 and -10 . When we add these, we obtain -3 . This simplifies our expression further to: $4x - 3$. Thus, it leads us directly to the correct and simplest form of the expression, which is $4x - 3$.

8. What is the value of $4(b - 4)^2 + 15$ for $b = 5$?

- A. 15**
- B. 27**
- C. 19**
- D. 31**

To find the value of the expression $4(b - 4)^2 + 15$ when $b = 5$, we start by substituting 5 for b in the expression. 1. First, calculate $b - 4$: $b - 4 = 5 - 4 = 1$. 2. Next, substitute $b - 4$ into the expression: $(b - 4)^2 = 1^2 = 1$. 3. Now, substitute this value into the expression: $4(b - 4)^2 + 15 = 4(1) + 15$. 4. Multiply 4 by 1 : $4(1) = 4$. 5. Finally, add 15 : $4 + 15 = 19$. Thus, when $b = 5$, the entire expression evaluates to 19 . Therefore, the correct answer is 19 . In this context, while the other choices give different

9. How is the distance between two points (x_1, y_1) and (x_2, y_2) calculated?

- A. Distance = $|x_2 - x_1| + |y_2 - y_1|$
- B. Distance = $(x_2 - x_1) + (y_2 - y_1)$
- C. Distance = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$**
- D. Distance = $(x_2 - x_1)^2 + (y_2 - y_1)^2$

The distance between two points in a two-dimensional Cartesian coordinate system, represented by the points (x_1, y_1) and (x_2, y_2) , is calculated using the distance formula derived from the Pythagorean theorem. This formula is C: Distance = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$. To understand why this formula is correct, consider that the difference in the x-coordinates $(x_2 - x_1)$ and the difference in the y-coordinates $(y_2 - y_1)$ represent the lengths of the legs of a right triangle formed by these two points. The distance between the points is the length of the hypotenuse of this triangle. According to the Pythagorean theorem, the square of the length of the hypotenuse (the distance we are trying to find) is equal to the sum of the squares of the other two sides. Therefore, we square the differences in each coordinate: $(x_2 - x_1)^2$ and $(y_2 - y_1)^2$. Finally, we take the square root of the sum of these squares to find the actual distance. This understanding reinforces why the correct answer is based on the underlying geometric principles,

10. What is the simplified value of the expression $-2[(-3 - 2) - 2(-2 + m)]$ when $m = 1$?

- A. -20**
- B. 20
- C. -30
- D. 10

To find the simplified value of the expression $-2[(-3 - 2) - 2(-2 + m)]$ when $(m = 1)$, we will substitute (m) with 1 and simplify step by step. First, substitute (m) in the expression: $-2[(-3 - 2) - 2(-2 + 1)]$. Now, simplify the expression inside the brackets step by step: 1. Calculate $(-3 - 2)$: $-3 - 2 = -5$ 2. Calculate $(-2 + 1)$: $-2 + 1 = -1$ 3. Now calculate $(2(-1))$: $2(-1) = -2$ Now, substitute these values back into the expression: $-2[(-5) - (-2)]$. Now, simplify the expression inside the brackets: 1. Calculate $(-5 - (-2))$: $-5 + 2 = -3$ Now we have: $-2[-3]$

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://algebra.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE