Alabama Journeyman Plumbing Pre-Test Practice (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. What is the grease retention capacity in pounds for a grease interceptor with a total flow through rating of 10 gallons per minute?
 - A. 10 pounds
 - B. 15 pounds
 - C. 20 pounds
 - D. 25 pounds
- 2. What is a common method used to connect pipes in plumbing?
 - A. Soldering
 - **B.** Welding
 - C. Cold fusing
 - D. Drilling
- 3. What does the acronym "B28" refer to in plumbing code?
 - A. Type of pipe
 - **B.** Maximum pressure for fixtures
 - C. Minimum allowable pressure for testing plumbing systems
 - D. Standard for pipe fittings
- 4. What material should never be used in DWV systems?
 - A. Plastic pipe
 - B. Copper pipe
 - C. Galvanized pipe
 - D. PVC pipe
- 5. What is the minimum slope required for a 3-inch sewer drain line?
 - A. 1 inch per foot
 - B. 1/2 inch per foot
 - C. 1/4 inch per foot
 - D. 3/8 inch per foot

6. What is the role of a pressure-reducing valve (PRV) in a plumbing system?
A. To filter incoming water
B. To increase water pressure
C. To reduce incoming water pressure to a safe level
D. To measure water temperature

- 7. What is the minimum size of a vent pipe?
 - A. 1 inch
 - B. 1-1/4 inch
 - C. 1-1/2 inch
 - D. 2 inch
- 8. What degree of hazard does a dual check valve type backflow preventer protect against?
 - A. High hazard
 - B. Medium hazard
 - C. Low hazard
 - D. No hazard
- 9. What is the DFU value load factor assigned to a kitchen sink?
 - **A.** 1
 - **B.** 2
 - **C.** 3
 - **D.** 4
- 10. Which component is essential for ensuring proper drainage in plumbing systems?
 - A. Sewer line
 - B. Trap
 - C. Shut-off valve
 - D. Hose connection

Answers

- 1. C 2. A 3. C 4. C 5. C 6. C 7. B 8. C 9. B 10. B

Explanations

- 1. What is the grease retention capacity in pounds for a grease interceptor with a total flow through rating of 10 gallons per minute?
 - A. 10 pounds
 - B. 15 pounds
 - C. 20 pounds
 - D. 25 pounds

The grease retention capacity of a grease interceptor is determined by its flow-through rate, which indicates how many gallons per minute the interceptor can handle. For a grease interceptor rated at a total flow of 10 gallons per minute, the grease retention capacity is typically calculated based on industry standards, which often suggest that for every gallon per minute of flow, a grease interceptor should have a retention capacity of approximately 2 pounds of grease. In this case, with a flow rating of 10 gallons per minute, you can calculate the expected grease retention capacity as follows: 10 gallons per minute multiplied by the 2 pounds per gallon gives you a total of 20 pounds. Therefore, a grease interceptor with this flow rating would indeed have a grease retention capacity of 20 pounds, making it essential for effective grease management in plumbing systems. This capacity is crucial as it helps prevent grease buildup in drainage systems, thereby reducing the likelihood of clogs and ensuring proper sanitation.

- 2. What is a common method used to connect pipes in plumbing?
 - A. Soldering
 - **B.** Welding
 - C. Cold fusing
 - D. Drilling

Soldering is a common method used to connect pipes in plumbing, particularly for copper pipes. This process involves melting a filler metal (solder) to join the pipes together. The heat from a soldering torch allows the solder to flow into the joint, creating a strong, watertight seal once it cools and solidifies. Soldering is widely used because it is effective for joining pipes that will carry water and other liquids, ensuring durability and leakage prevention. In addition to soldering, the other methods listed have different applications and are not typically suited for standard plumbing connections. Welding, for instance, is generally reserved for thicker metals used in structural applications rather than for conventional plumbing tasks. Cold fusing is a process associated with certain types of plastics and is not applicable to traditional metal plumbing systems. Drilling does not serve the purpose of connecting pipes but rather involves creating holes or access points in materials. Thus, soldering stands out as the standard technique for joining pipes in plumbing systems.

3. What does the acronym "B28" refer to in plumbing code?

- A. Type of pipe
- **B.** Maximum pressure for fixtures
- C. Minimum allowable pressure for testing plumbing systems
- D. Standard for pipe fittings

The acronym "B28" in plumbing code specifically refers to the minimum allowable pressure for testing plumbing systems. This standard is crucial because it establishes the baseline pressure required to ensure the integrity of plumbing systems during testing. Understanding this pressure is essential for identifying potential leaks or weaknesses within the system before it is put into service. In plumbing practice, adhering to these minimum pressure standards helps ensure that all connections, joints, and other components are secure and functioning correctly. Proper testing at the minimum allowable pressure prevents future issues that could arise from undetected leaks or inadequate pressure, contributing to the overall reliability and safety of plumbing installations.

4. What material should never be used in DWV systems?

- A. Plastic pipe
- B. Copper pipe
- C. Galvanized pipe
- D. PVC pipe

In drainage, waste, and vent (DWV) systems, galvanized pipe is considered unsuitable because it can corrode over time when exposed to moisture and wastewater. This corrosion can lead to the pipe's deterioration, causing leaks or even complete failure of the drainage system. The zinc coating that protects the steel from rust can wear off, and eventually, the underlying steel will rust and weaken, making it unreliable for long-term use in DWV applications. On the other hand, materials like plastic pipe, copper pipe, and PVC pipe are commonly used in DWV systems due to their resistance to corrosion, longevity, and ease of installation. They maintain structural integrity and performance without the risk of degrading quickly, making them preferable choices for effective drainage solutions.

5. What is the minimum slope required for a 3-inch sewer drain line?

- A. 1 inch per foot
- B. 1/2 inch per foot
- C. 1/4 inch per foot
- D. 3/8 inch per foot

The correct minimum slope for a 3-inch sewer drain line is a quarter inch per foot. This standard ensures efficient drainage by promoting proper flow and preventing clogs within the system. A slope that is too steep can lead to excessive flow velocity, causing solids to be carried along faster than liquids, which may result in blockages. Conversely, a slope that is too shallow could lead to insufficient flow and increased risk of sediment settlement and clogs. The quarter inch per foot slope strikes an ideal balance, supporting effective waste transport while minimizing the potential for issues of backup or stagnation. Understanding and applying these slope standards is crucial for maintaining a properly functioning plumbing system in residential and commercial settings.

6. What is the role of a pressure-reducing valve (PRV) in a plumbing system?

- A. To filter incoming water
- B. To increase water pressure
- C. To reduce incoming water pressure to a safe level
- D. To measure water temperature

The role of a pressure-reducing valve (PRV) in a plumbing system is to reduce incoming water pressure to a safe level. High water pressure can lead to a variety of problems, including leaks and damage to plumbing fixtures and appliances. A PRV controls the pressure of water entering a building or a specific plumbing system by automatically reducing it to a preset level, which protects the plumbing infrastructure and maintains efficient operation throughout the system. Maintaining a proper pressure level is crucial for ensuring the longevity of pipes and fixtures, as well as optimizing water flow. A correctly functioning PRV helps prevent over-pressurization, which can lead to issues such as burst pipes or excessive wear on plumbing fixtures. In contrast, filtering incoming water is typically the function of a different device, such as a water filter, and increasing water pressure is not a function of the PRV, as its purpose is the opposite. Measuring water temperature is carried out by temperature gauges or thermometers, not by a PRV, which focuses solely on managing pressure.

7. What is the minimum size of a vent pipe?

- A. 1 inch
- B. 1-1/4 inch
- C. 1-1/2 inch
- D. 2 inch

The minimum size of a vent pipe is 1-1/4 inches. This size is recognized by plumbing codes as the smallest diameter that can adequately serve as a vent for residential plumbing systems. Vent pipes play a crucial role in maintaining proper air pressure within the plumbing system and preventing sewer gases from entering the living spaces. Choosing a vent pipe size of 1-1/4 inches ensures that there is sufficient airflow to prevent siphoning and allow for the drainage system to function properly. A smaller diameter pipe might not provide adequate ventilation, potentially leading to issues such as slow drainage and unpleasant odors from sewer gases. Thus, 1-1/4 inches serves as a standard measurement that balances function and compliance with plumbing codes, ensuring safety and efficiency in plumbing systems.

8. What degree of hazard does a dual check valve type backflow preventer protect against?

- A. High hazard
- **B.** Medium hazard
- C. Low hazard
- D. No hazard

A dual check valve type backflow preventer is designed to protect against low hazard scenarios in plumbing systems. This type of device is typically used in applications where the potential for contamination is minimal, such as in residential water supply systems or irrigation systems that do not involve substances that could cause significant harm if introduced into the drinking water supply. The dual check valve operates by utilizing two separate check valves within the assembly, which act as barriers to prevent backflow. This configuration effectively mitigates the risks associated with low hazard connections, ensuring that non-hazardous fluids do not migrate back into the potable water supply. In contrast, higher hazard conditions, such as those involving toxic or corrosive substances, require more robust protection measures, such as an air gap or a reduced pressure zone assembly. Therefore, while the dual check valve is adequate for preventing backflow in low hazard applications, it is not suitable for situations where higher levels of risk exist in relation to water quality and safety.

9. What is the DFU value load factor assigned to a kitchen sink?

- A. 1
- **B.** 2
- **C.** 3
- D. 4

The Drainage Fixture Unit (DFU) value load factor assigned to a kitchen sink is 2. This value is specified in plumbing codes and guidelines, reflecting the average amount of wastewater that can be expected from a kitchen sink during peak usage times. The DFU is a crucial factor in plumbing design and helps determine the size of pipes and drainage systems needed to effectively manage the expected flow. Understanding the DFU for various fixtures is important for plumbing professionals to ensure that systems are designed to handle the anticipated load without risk of backups or failures. In this context, a kitchen sink typically generates a moderate level of drainage demand, thus earning it the DFU value of 2, which balances efficiency and performance in plumbing systems serving kitchen areas.

10. Which component is essential for ensuring proper drainage in plumbing systems?

- A. Sewer line
- B. Trap
- C. Shut-off valve
- D. Hose connection

The component that plays a critical role in ensuring proper drainage in plumbing systems is the trap. Traps are designed to hold a small amount of water which creates a barrier that prevents sewer gases from entering the dwelling while still allowing wastewater to flow through. This ensures that potential contaminants and odors from the sewer system are kept at bay. Additionally, traps help to facilitate proper drainage by providing a bend in the plumbing line that promotes efficient flow while preventing clogs. They are essential in maintaining a hygienic environment within plumbing systems, as they not only allow for the movement of waste but also contribute to the overall function and effectiveness of the drainage system. In contrast, while a sewer line is crucial for carrying waste away from a property, it does not itself manage the in-home drainage or sewage odor issues directly—those responsibilities fall to the traps. A shut-off valve is important for controlling water flow, and a hose connection is useful for various applications but does not have a direct impact on drainage efficiency in the way that traps do. Thus, traps are fundamental for ensuring that drainage works correctly and safely within plumbing systems.