Airport Firefighter Course Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. Which item is NOT typically included in an airport firefighter's PPE?
 - A. Fire-resistant gloves
 - **B.** Rubber boots
 - C. Safety goggles
 - D. Standard dress shoes
- 2. Describe the importance of regular maintenance on firefighting equipment.
 - A. It is not critical unless equipment is damaged
 - B. It ensures operational readiness and effectiveness during emergencies
 - C. It can be done on an annual basis
 - D. It helps in lowering insurance premiums
- 3. Oxygen cylinders displaced in a crash should only be disturbed under what condition?
 - A. Burial
 - B. Protection from fire or unnecessary manipulation
 - C. Immediate transport to life support
 - D. Overhaul operations
- 4. Ejection seats may be safetied by performing all the following except?
 - A. A. Interrupting the firing sequence
 - B. B. Inserting pins in the ejection seat handles
 - C. C. Pulling the face curtain above the ejection seat
 - D. D. Cutting the initiator hose
- 5. In addition to aircraft crashes, what other incident might airport firefighters be called to respond to?
 - A. Forest fires
 - **B. Building fires**
 - C. Fuel spills
 - D. House explosions

- 6. What is the role of foam in aircraft firefighting?
 - A. To cool down the aircraft
 - B. To extinguish fires and prevent re-ignition
 - C. To improve visibility for ground crews
 - D. To encapsulate hazardous materials
- 7. Which of the following is an example of a fire suppression system in airports?
 - A. Water hydrants located throughout the terminal
 - B. Fire extinguishers carried by crew members
 - C. Automated foam systems activated during a fire
 - D. Preventive training for all personnel
- 8. The unique extinguishing action of Aqueous Film Forming Foam (AFFF) is its what?
 - A. Self-sealing capability when disturbed
 - B. Cooling and foam blanketing abilities
 - C. Foam blanketing and penetrating abilities
 - D. Thermal and vapor sealing abilities
- 9. How are aircraft types categorized?
 - A. According to their intended purposes
 - B. Size of the aircraft and passenger capacity
 - C. Number of passengers and crew
 - D. Number and type of engines
- 10. Which tool is specifically designed to cut through the skin and structural materials of an aircraft?
 - A. Prying tool
 - **B.** Power rescue saw
 - C. Air chisel
 - D. Hydraulic rescue tool

Answers

- 1. D 2. B 3. B 4. C 5. C 6. B 7. C 8. A

- 9. A 10. B

Explanations

1. Which item is NOT typically included in an airport firefighter's PPE?

- A. Fire-resistant gloves
- **B.** Rubber boots
- C. Safety goggles
- D. Standard dress shoes

Standard dress shoes are not typically included in an airport firefighter's personal protective equipment (PPE). This is because firefighting requires specialized gear designed to protect against extreme heat, flames, and hazardous materials. Fire-resistant gloves are included to protect the hands from high temperatures and sharp objects while handling firefighting tools and equipment. Rubber boots are essential as they provide protection against water, chemicals, and electrical hazards, and they often come with slip-resistant soles to prevent slipping in wet conditions. Safety goggles help protect the eyes from heat, debris, and smoke, ensuring that firefighters can maintain visibility and avoid injury during operations. In contrast, standard dress shoes do not offer the necessary protection or durability needed in a high-risk environment like an airport firefighting operation, where firefighters may encounter intense heat and hazardous conditions.

- 2. Describe the importance of regular maintenance on firefighting equipment.
 - A. It is not critical unless equipment is damaged
 - B. It ensures operational readiness and effectiveness during emergencies
 - C. It can be done on an annual basis
 - D. It helps in lowering insurance premiums

Regular maintenance on firefighting equipment is crucial for ensuring operational readiness and effectiveness during emergencies. Firefighting equipment must function flawlessly when needed most, as any malfunction can lead to catastrophic consequences, including loss of life and property. By conducting regular maintenance, firefighters can identify and address potential issues before they become critical, ensuring that all gear, from hoses and nozzles to fire engines and protective clothing, operates at peak efficiency. This proactive approach not only guarantees that the equipment is in good working order but also builds confidence among the firefighting team in their tools. Knowing that their equipment has been routinely inspected and properly maintained allows firefighters to focus on their primary mission—responding effectively to emergencies. In contrast, neglecting maintenance could result in equipment failure during a crisis, significantly hindering response efforts and compromising safety.

- 3. Oxygen cylinders displaced in a crash should only be disturbed under what condition?
 - A. Burial
 - B. Protection from fire or unnecessary manipulation
 - C. Immediate transport to life support
 - D. Overhaul operations

The appropriate condition under which oxygen cylinders displaced in a crash should be disturbed is to ensure they are protected from fire or unnecessary manipulation. This emphasizes the importance of safety when handling potentially hazardous materials. Oxygen cylinders can create significant risks if they are exposed to fire or mishandled, which could lead to explosions or uncontrolled releases of oxygen. Therefore, firefighters and emergency personnel must prioritize assessing the scene for fire hazards before approaching the cylinders. Ensuring protection from fire means that personnel should only engage with the cylinders when it is safe to do so, mitigating risks to themselves and others. Disturbing the cylinders without this precaution could lead to dangerous situations that put both the responders and the victims at greater risk. This careful approach aligns with standard operating procedures in fire response scenarios where hazardous materials are involved, emphasizing the need to maintain safety for both the responders and the environment around the crash site.

- 4. Ejection seats may be safetied by performing all the following except?
 - A. A. Interrupting the firing sequence
 - B. B. Inserting pins in the ejection seat handles
 - C. C. Pulling the face curtain above the ejection seat
 - D. D. Cutting the initiator hose

The correct response to the question indicates that pulling the face curtain above the ejection seat does not serve as a method of safing the ejection seats. Safing procedures are specifically designed to ensure that the ejection mechanisms cannot inadvertently activate. Effective safing involves actions that prevent the firing sequence of the ejection system or provide physical barriers to prevent accidental deployment. Interrupting the firing sequence and inserting pins in the ejection seat handles are direct safety measures. These actions either stop the seat from being deployed under normal circumstances or create a physical block to the ejection mechanism. Cutting the initiator hose likewise functions as a crucial step in deactivating the ejection system, effectively preventing the seat from firing. On the other hand, pulling the face curtain above the ejection seat does not contribute to safety. The face curtain is primarily designed to protect the ejection seat occupant during the deployment of the seat and does not interfere with the mechanics of the ejection system or affect its functionality. Thus, it does not align with the necessary procedures to ensure the seat is safed.

5. In addition to aircraft crashes, what other incident might airport firefighters be called to respond to?

- A. Forest fires
- B. Building fires
- C. Fuel spills
- D. House explosions

Airport firefighters are specially trained to respond to a variety of incidents beyond just aircraft crashes, and one of the most relevant is fuel spills. Airports have significant quantities of fuel due to the presence of aircraft and ground support vehicles. In the event of a fuel spill, it poses a serious risk of fire hazards and environmental damage. The expertise of airport firefighters in handling flammable liquids makes them crucial in mitigating these situations effectively and safely. They are equipped to contain the fuel, prevent ignition, and manage any ensuing fire, as well as ensure the safety of passengers and airport personnel. While firefighters may respond to other emergencies such as building fires, forest fires, or house explosions, these scenarios are typically beyond the routine responsibilities of airport firefighting teams. Their primary focus is on incidents directly connected with airport operations, which is why fuel spills stand out as a key additional responsibility in their role.

6. What is the role of foam in aircraft firefighting?

- A. To cool down the aircraft
- B. To extinguish fires and prevent re-ignition
- C. To improve visibility for ground crews
- D. To encapsulate hazardous materials

Foam plays a vital role in aircraft firefighting primarily by extinguishing fires and preventing re-ignition. When foam is applied to a fire, it forms a blanket over the burning material, which both smothers the flames and limits the oxygen supply that fuels the fire. This is crucial in aviation incidents, where fuel types can include aviation gasoline and other flammable materials that can ignite quickly and spread. Additionally, the foam creates a barrier that cools the fire while preventing flammable vapors from escaping, further reducing the risk of re-ignition once the flames are out. The effectiveness of foam in fighting fires, especially those involving fuel, is why it is commonly used in airport firefighting operations. This capability is essential for minimizing the impact of an incident on both human lives and property.

7. Which of the following is an example of a fire suppression system in airports?

- A. Water hydrants located throughout the terminal
- B. Fire extinguishers carried by crew members
- C. Automated foam systems activated during a fire
- D. Preventive training for all personnel

An automated foam system is a specific type of fire suppression system designed to quickly and effectively extinguish fires, particularly those involving flammable liquids, which are common in airport environments due to the presence of aviation fuels. These systems deploy foam, which not only cools the fire but also creates a barrier that prevents the release of flammable vapors, thus reducing the risk of re-ignition. The automated nature of these systems allows for rapid deployment in case of an emergency, enhancing safety and minimizing damage. In contrast, water hydrants, fire extinguishers, and preventive training serve essential safety functions but do not directly constitute fire suppression systems. Water hydrants provide a water supply for firefighters but are not equipped to suppress fires on their own. Fire extinguishers, while crucial for immediate response, are typically manually operated and may not be as effective in large-scale incidents without the support of a comprehensive system. Preventive training is vital for preparing personnel to respond to emergencies and to minimize risks, but it does not directly extinguish fires. Therefore, the automated foam system is the most fitting example of a specialized fire suppression system in the airport context.

8. The unique extinguishing action of Aqueous Film Forming Foam (AFFF) is its what?

- A. Self-sealing capability when disturbed
- B. Cooling and foam blanketing abilities
- C. Foam blanketing and penetrating abilities
- D. Thermal and vapor sealing abilities

The unique extinguishing action of Aqueous Film Forming Foam (AFFF) lies primarily in its foam blanketing and penetrating abilities. AFFF creates a thin film that spreads over the surface of flammable liquids, effectively sealing off the fuel from the atmosphere and significantly reducing the release of flammable vapors. This film also aids in cooling the surface, helping to suppress flames and prevent re-ignition. While the self-sealing characteristic of AFFF is valuable in certain situations, it is the combination of its foam blanketing and its ability to penetrate burning fuels that underpins its effectiveness as a firefighting agent for Class B fires, particularly those involving hydrocarbons. This distinguishes AFFF from other extinguishing agents and highlights its critical role in airport firefighting scenarios, where rapid and effective suppression of fuel fires is essential.

9. How are aircraft types categorized?

- A. According to their intended purposes
- B. Size of the aircraft and passenger capacity
- C. Number of passengers and crew
- D. Number and type of engines

Aircraft types are categorized according to their intended purposes as this classification reflects how each type of aircraft is designed to be used in aviation. Categories may include commercial airliners, cargo planes, military aircraft, private jets, and specialized air taxis, among others. Each of these categories serves distinct operational needs, such as transporting passengers, carrying goods, or conducting military missions. This categorization helps professionals in the field, including airport firefighters and safety personnel, understand the operational characteristics and associated risks of different aircraft, which is vital when preparing for emergency response scenarios. Recognizing the intended use informs effective solutions for potential hazards they may encounter based on the specific aircraft's mission profile. The other options touch on various characteristics of aircraft but do not encapsulate the broader context of how aircraft are typically categorized within the industry. Size, passenger capacity, crew requirements, and engine types can vary significantly within the same intended purpose category, making them less comprehensive for classification.

10. Which tool is specifically designed to cut through the skin and structural materials of an aircraft?

- A. Prying tool
- **B.** Power rescue saw
- C. Air chisel
- D. Hydraulic rescue tool

The power rescue saw is specifically designed for cutting through various materials, including the skin and structural components of aircraft. Its high-powered blade and maneuverability make it effective in emergency situations where quick access to the interior of an aircraft is necessary, such as during a rescue operation after a crash or incident. The power rescue saw can efficiently cut through dense materials like aluminum and composite structures commonly found in aircraft, allowing firefighters and rescue personnel to perform their tasks more effectively. The design and capability of the power rescue saw ensure that it can handle the unique challenges presented by aircraft construction, making it a vital tool in the arsenal of an airport firefighter. Other tools listed may have their specific uses but are not as specialized for rapid cutting of aircraft materials in emergency scenarios. For instance, prying tools are more suited for gaining leverage and opening compartments rather than cutting. Air chisels are typically used for different applications and may not provide the necessary cutting depth or speed required in such high-stakes situations. Hydraulic rescue tools are invaluable for extrication but may not be specifically designed to cut the skin and structure of aircraft as effectively as the power rescue saw.