

AICE Chemistry Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

1. What is a dipole moment?

- A. The distance between two bonded atoms**
- B. The measure of bond energy**
- C. The product of charge and distance between charge centers**
- D. A type of hybridization**

2. What typically happens to the surroundings during an exothermic reaction?

- A. They gain heat and warmth**
- B. They lose heat and cool down**
- C. They undergo a phase change**
- D. They remain at the same temperature**

3. What are CFCs known for?

- A. Being highly reactive**
- B. Destroying the ozone layer**
- C. Having a strong odor**
- D. Being highly flammable**

4. How is the relative molecular mass calculated?

- A. By averaging the mass of all isotopes in a molecule**
- B. By multiplying the molar mass by the atomic number**
- C. By adding the relative atomic masses of all the atoms in a molecule**
- D. By dividing the total mass of a compound by its volume**

5. What drives the nucleophile's ability to substitute an atom in a halogenoalkane?

- A. Strength of the carbon-hydrogen bond**
- B. Polarity of the carbon-halogen bond**
- C. Temperature of the reaction**
- D. Pressure conditions**

6. What process occurs at the cathode in an electrochemical cell?

- A. Oxidation occurs**
- B. Reduction occurs**
- C. Electrons are produced**
- D. Heat is released**

7. Which of the following best describes Markovnikov's rule?

- A. The hydrogen atom attaches to the less substituted carbon atom of an alkene**
- B. The hydrogen atom attaches to the carbon with the greatest number of hydrogen atoms**
- C. The carbon-carbon double bond does not react with hydrogen halides**
- D. The addition produces only one product**

8. What reagent is used for the reduction of aldehydes and ketones?

- A. Hydrogen peroxide**
- B. Lithium tetrahydridoaluminate**
- C. Phosphine**
- D. Sodium chloride**

9. What does the term "shielding" in the context of ionization energy refer to?

- A. A reduction in attraction between the nucleus and outer electrons**
- B. The increase in repulsion among electrons**
- C. The interaction between electrons in different shells**
- D. The ability to block nuclear charge**

10. What is an atomic orbital?

- A. Region of space where no electrons are found**
- B. Region of space around the nucleus where the probability of finding an electron is maximum**
- C. Fixed path around the nucleus where electrons travel**
- D. Area outside the nucleus with no defined shape**

Answers

SAMPLE

1. C
2. B
3. B
4. C
5. B
6. B
7. B
8. B
9. A
10. B

SAMPLE

Explanations

SAMPLE

1. What is a dipole moment?

- A. The distance between two bonded atoms
- B. The measure of bond energy
- C. The product of charge and distance between charge centers**
- D. A type of hybridization

A dipole moment is a quantitative measure of the separation of positive and negative charges in a molecule. It reflects how much the electron density is unevenly distributed within the molecule due to differences in electronegativity between bonded atoms. The dipole moment can be calculated as the product of the magnitude of the charge and the distance between the centers of positive and negative charge. This is why the correct choice is the product of charge and distance between charge centers. It is this very concept that allows chemists to predict the polarity of molecules, which has implications in molecular interactions, solubility, and reactivity. In contrast, other options do not accurately describe what a dipole moment represents. The distance between two bonded atoms pertains to bond length, which is different from the idea of charge distribution. Bond energy refers to the strength of the bond between atoms, not the charge separation. Lastly, hybridization is a concept related to the mixing of atomic orbitals to form new hybrid orbitals, and it is not directly related to the dipole moment. Understanding the nature and significance of dipole moments is crucial for interpreting chemical behavior in polarity and intermolecular forces.

2. What typically happens to the surroundings during an exothermic reaction?

- A. They gain heat and warmth
- B. They lose heat and cool down**
- C. They undergo a phase change
- D. They remain at the same temperature

In an exothermic reaction, the system releases energy in the form of heat to the surroundings, resulting in a decrease in the system's internal energy. Consequently, this transfer of heat causes the surroundings to lose heat energy. As a result, the temperature of the surroundings decreases, which aligns with the response describing them as cooling down. This phenomenon is observed in many chemical processes, such as combustion reactions, where heat is generated and can be felt as warmth in the surrounding area. However, in exothermic reactions, the immediate effect is a decrease in the thermal energy of the surroundings, indicating that they lose heat. This characteristic of exothermic reactions is crucial for understanding energetic changes in chemical reactions and processes.

3. What are CFCs known for?

- A. Being highly reactive
- B. Destroying the ozone layer**
- C. Having a strong odor
- D. Being highly flammable

CFCs, or chlorofluorocarbons, are best known for their role in the destruction of the ozone layer. These compounds, which were commonly used as refrigerants, propellants in aerosol sprays, and solvents, release chlorine atoms when they are broken down in the stratosphere. A single chlorine atom can destroy thousands of ozone molecules before it is removed from the atmosphere. The depletion of ozone in this layer allows more harmful ultraviolet (UV) radiation to reach the Earth, leading to increased risks of skin cancer and other environmental issues. The other options do not accurately reflect the characteristics of CFCs. For instance, they are not highly reactive under normal conditions, and while they are not odorless, they do not have a strong odor that would be easily identifiable. Additionally, CFCs are generally not flammable, which distinguishes them from many other chemicals. Therefore, their significant impact on the ozone layer is their defining feature, highlighting the environmental concerns associated with their use and release into the atmosphere.

4. How is the relative molecular mass calculated?

- A. By averaging the mass of all isotopes in a molecule
- B. By multiplying the molar mass by the atomic number
- C. By adding the relative atomic masses of all the atoms in a molecule**
- D. By dividing the total mass of a compound by its volume

The relative molecular mass, also known as molecular weight, is calculated by adding together the relative atomic masses of all the atoms present in a molecule. Each element has a specific atomic mass, which can typically be found on the periodic table. When determining the molecular mass, you consider the number of each type of atom within the molecule and multiply the atomic mass of each atom by its quantity. For example, in water (H_2O), the relative molecular mass is calculated by taking two times the atomic mass of hydrogen (approximately 1.01) and adding that to one times the atomic mass of oxygen (approximately 16.00). So, the calculation would be $(2 \times 1.01) + (1 \times 16.00) = 2.02 + 16.00 = 18.02 \text{ g/mol}$. Understanding this calculation helps in various applications, such as stoichiometry in chemical reactions, where precise amounts of reactants and products are often needed.

5. What drives the nucleophile's ability to substitute an atom in a halogenoalkane?

- A. Strength of the carbon-hydrogen bond**
- B. Polarity of the carbon-halogen bond**
- C. Temperature of the reaction**
- D. Pressure conditions**

The nucleophile's ability to substitute an atom in a halogenoalkane is primarily driven by the polarity of the carbon-halogen bond. In a halogenoalkane, the carbon atom is attached to a halogen atom, and the halogen is generally more electronegative than carbon. This difference in electronegativity results in a polar bond, where the carbon atom carries a partial positive charge, and the halogen carries a partial negative charge. Because of this polarization, the carbon atom becomes susceptible to attack by nucleophiles, which are species that possess a lone pair of electrons and can donate them to form a bond with the electron-deficient carbon. The nucleophile is thus able to approach the carbon more readily, leading to a substitution reaction where the halogen is replaced by the nucleophile. While other factors such as temperature and pressure can influence the rate of a reaction or the equilibrium position, the intrinsic property that enables the nucleophile to effectively attack the halogenoalkane is the resulting polarity of the carbon-halogen bond, as it creates a favorable condition for nucleophilic substitution to occur. Additionally, the strength of carbon-hydrogen bonds is not pertinent to the substitution process in this context,

6. What process occurs at the cathode in an electrochemical cell?

- A. Oxidation occurs**
- B. Reduction occurs**
- C. Electrons are produced**
- D. Heat is released**

In an electrochemical cell, the cathode is defined as the electrode where reduction occurs. This process involves the gain of electrons by a species in the solution, which results in a decrease in the oxidation state of that species. When a redox reaction takes place in an electrochemical cell, oxidation occurs at the anode, leading to the release of electrons that flow towards the cathode. At the cathode, these electrons are accepted by the ions or molecules present, facilitating their reduction. For example, if copper(II) ions are reduced, they gain two electrons to form solid copper metal. Understanding this process is crucial, as it reflects the fundamental electrochemical principles where the flow of electrons generates electrical energy. Thus, the cathode's role in reduction is a central aspect of how electrochemical cells function, contrasting the processes that occur at the anode and further defining the overall chemistry of the cell.

7. Which of the following best describes Markovnikov's rule?

- A. The hydrogen atom attaches to the less substituted carbon atom of an alkene**
- B. The hydrogen atom attaches to the carbon with the greatest number of hydrogen atoms**
- C. The carbon-carbon double bond does not react with hydrogen halides**
- D. The addition produces only one product**

Markovnikov's rule states that when a hydrogen halide (like HBr or HCl) adds to an unsymmetrical alkene, the hydrogen atom will attach to the carbon with the greater number of hydrogen substituents, which effectively means the less substituted carbon of the double bond. This leads to the formation of a more stable carbocation intermediate during the reaction. Therefore, when the addition of the hydrogen halide occurs, the more stable product, which often results from the more substituted carbon, will predominate. The idea behind this is rooted in carbocation stability: tertiary carbocations are more stable than secondary ones, which in turn are more stable than primary. Hence, the preference for the hydrogen to bond with the carbon that already has more hydrogen atoms maximizes the stability of the resulting carbocation and the product formed. This understanding is critical in predicting the outcome of reactions involving unsymmetrical alkenes. The other choices do not accurately reflect the principle of Markovnikov's rule. The statement regarding the hydrogen atom attaching to the less substituted carbon describes the opposite of what occurs according to the rule, while the assertion about the carbon-carbon double bond not reacting with hydrogen halides is incorrect since such reactions are fundamental to addition mechanisms.

8. What reagent is used for the reduction of aldehydes and ketones?

- A. Hydrogen peroxide**
- B. Lithium tetrahydridoaluminate**
- C. Phosphine**
- D. Sodium chloride**

The reduction of aldehydes and ketones typically involves converting these carbonyl compounds into their corresponding alcohols. Lithium tetrahydridoaluminate, known as lithium aluminium hydride (LiAlH_4), is a powerful reducing agent that donates hydride ions (H^-) to the carbonyl carbon, facilitating this transformation. This reagent is particularly effective because it can reduce both aldehydes and ketones to their respective alcohols under relatively mild conditions. It works by nucleophilically attacking the electrophilic carbon in the carbonyl group, leading to the formation of an alcohol after subsequent protonation. In contrast, the other options do not function as suitable reagents for this specific reduction process. For instance, hydrogen peroxide is more commonly associated with oxidation reactions rather than reductions. Phosphine is used in different types of chemical transformations and does not generally serve as a reducing agent for carbonyl compounds. Sodium chloride, being a simple ionic compound, does not have reducing properties and is not typically involved in reduction reactions of aldehydes or ketones. Thus, lithium tetrahydridoaluminate is the correct choice as it effectively reduces both aldehydes and ketones, yielding alcohols.

9. What does the term "shielding" in the context of ionization energy refer to?

- A. A reduction in attraction between the nucleus and outer electrons**
- B. The increase in repulsion among electrons**
- C. The interaction between electrons in different shells**
- D. The ability to block nuclear charge**

The term "shielding" in the context of ionization energy specifically refers to the reduction in attraction between the nucleus and outer electrons. As electrons occupy different energy levels or shells around the nucleus, the inner-shell electrons repel the outer electrons due to their like charge. This repulsion effectively "shields" the outer electrons from the full positive charge of the nucleus. When the outer electrons experience this reduced effective nuclear charge, it becomes easier to remove them, thereby decreasing the ionization energy required to detach these electrons. Understanding shielding is crucial because as one moves down a group in the periodic table, the number of inner electron shells increases, leading to greater shielding. Consequently, the ionization energy decreases because the effective nuclear charge felt by the outermost electrons diminishes.

10. What is an atomic orbital?

- A. Region of space where no electrons are found**
- B. Region of space around the nucleus where the probability of finding an electron is maximum**
- C. Fixed path around the nucleus where electrons travel**
- D. Area outside the nucleus with no defined shape**

An atomic orbital is defined as a region of space around the nucleus where the probability of finding an electron is highest. This concept is rooted in quantum mechanics, which describes electrons not as particles moving in fixed paths, but rather as existing in clouds of probability. The shape and orientation of an atomic orbital indicate where an electron is likely to be located, emphasizing that there are specific areas in space associated with different energy levels. The term "probability" is crucial because it highlights the idea that while we can't pinpoint an electron's exact location at any moment, we can predict where it is most likely to be found based on its energy state. This understanding contrasts sharply with older models of the atom that depicted electrons as moving in defined orbits, similar to planets around the sun. This interpretation allows for the existence of various types of orbitals (s, p, d, f) that have different shapes and orientations, reflecting the complex nature of electron behavior. Therefore, the choice that identifies an atomic orbital as a region of maximum probability for finding an electron accurately encapsulates the contemporary view of atomic structure in chemistry.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://aicechemistry.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE