

Advanced Placement (AP) Biology Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

1. What does ATP stand for?

- A. Adenosine triphosphate**
- B. Arsenic triphosphate**
- C. Adenylate triphosphate**
- D. Aromatic triphosphate**

2. What does osmosis specifically refer to in biological terms?

- A. Movement of solutes across a membrane**
- B. Diffusion of water across a semi-permeable membrane**
- C. Hydration of cells in isotonic solutions**
- D. Loss of water from cells**

3. What is the primary function of stomata in plants?

- A. Photosynthesis regulation**
- B. Water retention**
- C. Gas exchange regulation**
- D. Nutrient absorption**

4. Which of the following best defines the process of reception in cell signaling?

- A. The release of chemicals into the bloodstream**
- B. The binding of a signal molecule to a receptor protein**
- C. The alteration of a protein's function**
- D. The synthesis of new proteins**

5. What occurs during the S phase of the cell cycle?

- A. Cell growth**
- B. Replication of DNA**
- C. Separation of chromosomes**
- D. Formation of the mitotic spindle**

6. What does the F1 generation represent in the context of Mendelian genetics?

- A. Initial parental generation**
- B. Next generation after hybridization**
- C. Offspring of the F2 generation**
- D. Backcross offspring**

7. Where is ribosomal RNA synthesized within the cell?

- A. Nucleus**
- B. Ribosome**
- C. Nucleolus**
- D. Cytoplasm**

8. What role do enzymes play in metabolic pathways?

- A. They are not involved in metabolic pathways**
- B. Their role is only to catalyze the final product**
- C. They assist in altering specific molecules**
- D. They inhibit metabolic reactions**

9. What is the definition of denatured enzymes?

- A. Enzymes that have increased their activity**
- B. Enzymes that have lost their functional shape**
- C. Enzymes that are activated by temperature changes**
- D. Enzymes that have undergone substrate modification**

10. What allows proteins to fold into their functional 3D shape?

- A. Weak bonds between polypeptide chains**
- B. Peptide bonds between amino acids**
- C. Interactions between side chains of amino acids**
- D. Hydrogen bonds only**

Answers

SAMPLE

1. A
2. B
3. C
4. B
5. B
6. B
7. C
8. C
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. What does ATP stand for?

- A. Adenosine triphosphate**
- B. Arsenic triphosphate
- C. Adenylate triphosphate
- D. Aromatic triphosphate

ATP stands for adenosine triphosphate. It is a crucial molecule in cellular biology and serves as the primary energy currency of the cell. The structure of ATP includes an adenosine molecule, which is composed of an adenine base and a ribose sugar, coupled with three phosphate groups. The high-energy bonds between these phosphate groups can be hydrolyzed to release energy, driving many cellular processes such as muscle contraction, nerve impulse propagation, and biochemical synthesis. The significance of this answer lies in the versatility of ATP in metabolism and its role as a mediator of energy transfer within cells. Other options mentioned do not accurately represent the function or structure of ATP, thus reinforcing the importance of recognizing the correct terminology associated with biochemical energy carriers.

2. What does osmosis specifically refer to in biological terms?

- A. Movement of solutes across a membrane
- B. Diffusion of water across a semi-permeable membrane**
- C. Hydration of cells in isotonic solutions
- D. Loss of water from cells

Osmosis is defined specifically as the diffusion of water across a semi-permeable membrane. This process is crucial for maintaining cellular homeostasis. In biological contexts, a semi-permeable membrane allows certain substances (like water) to pass while restricting others (like solutes). Water will move from an area of lower solute concentration to an area of higher solute concentration until equilibrium is reached. This movement of water is vital for processes such as nutrient transport, waste removal, and the regulation of cell volume. The focus on the movement of water rather than solutes is what differentiates osmosis from other forms of transport. Understanding osmosis is critical in contexts like plant turgor pressure, kidney function, and the effects of different solutions (hypertonic, hypotonic, isotonic) on cells.

3. What is the primary function of stomata in plants?

- A. Photosynthesis regulation
- B. Water retention
- C. Gas exchange regulation**
- D. Nutrient absorption

The primary function of stomata in plants is to regulate gas exchange. Stomata are small openings found on the surfaces of leaves and stems that allow for the exchange of gases between the plant and its environment. This regulation is crucial because it facilitates the intake of carbon dioxide needed for photosynthesis, while also enabling the release of oxygen as a byproduct of this process. Additionally, stomata play a role in transpiration, the process by which water vapor exits the plant. By opening and closing, stomata can control water loss, leading to the relationship between gas exchange and water regulation. However, their main role centers around the exchange of gases, highlighting their importance in supporting photosynthesis and overall plant health. While stomata do influence water retention, that is not their primary function; rather, they are more directly involved in managing the exchange of gases. Nutrient absorption occurs through the roots of the plant, not through the stomata, and while stomata can impact the regulation of photosynthesis by allowing carbon dioxide in and oxygen out, this aspect is a component of the broader function of gas exchange.

4. Which of the following best defines the process of reception in cell signaling?

- A. The release of chemicals into the bloodstream
- B. The binding of a signal molecule to a receptor protein**
- C. The alteration of a protein's function
- D. The synthesis of new proteins

The process of reception in cell signaling is best defined as the binding of a signal molecule to a receptor protein. This crucial first step involves the interaction between a ligand (the signaling molecule) and a specific receptor, which can be located on the cell surface or within the cell. When the signal molecule binds to the receptor, it causes a conformational change in the receptor, initiating a cascade of cellular responses that lead to a physiological effect. This binding is highly specific, meaning that only certain molecules can interact with particular receptors, ensuring that the correct signals are relayed within the cell. The other options describe different aspects of cell signaling but do not specifically define the reception process. The release of chemicals into the bloodstream refers to the broader concept of signal transmission rather than the act of receiving signals. Similarly, the alteration of a protein's function and the synthesis of new proteins describe downstream effects that follow reception but do not encompass the initial binding event that characterizes reception in cell signaling.

5. What occurs during the S phase of the cell cycle?

- A. Cell growth
- B. Replication of DNA**
- C. Separation of chromosomes
- D. Formation of the mitotic spindle

During the S phase of the cell cycle, replication of DNA occurs. This phase is crucial because it ensures that when a cell eventually divides, each daughter cell receives an identical set of genetic material. During this phase, the entire genome is duplicated, resulting in the formation of two complete sets of chromosomes. This process is tightly regulated and involves various enzymes, including DNA polymerase, which synthesizes new strands of DNA by matching nucleotides to the existing strands, ensuring that the genetic information is accurately copied. This replication is essential for cell division, as it guarantees that both cells produced will have the same genetic instructions necessary for proper function and development. The successful completion of the S phase is critical for the subsequent phases of the cell cycle, particularly the G2 phase where the cell prepares for mitosis, and ultimately results in the accurate division of genetic material during the M phase.

6. What does the F1 generation represent in the context of Mendelian genetics?

- A. Initial parental generation
- B. Next generation after hybridization**
- C. Offspring of the F2 generation
- D. Backcross offspring

In Mendelian genetics, the F1 generation represents the first filial generation, which is the direct offspring resulting from a cross between two parental (P) generation individuals with different traits. This generation is significant because it typically exhibits a combination of the traits found in its parents, often showing a dominant phenotype if one trait is dominant over the other. The F1 generation serves as the foundational basis for observing inheritance patterns and traits, which are then further examined in the subsequent F2 generation—derived by crossing F1 individuals among themselves. Thus, selecting the next generation after hybridization as the correct answer accurately reflects the role of the F1 generation in genetic studies, establishing the principles of heredity as introduced by Gregor Mendel.

7. Where is ribosomal RNA synthesized within the cell?

- A. Nucleus
- B. Ribosome
- C. Nucleolus**
- D. Cytoplasm

Ribosomal RNA (rRNA) is synthesized in the nucleolus, a specialized structure within the nucleus of eukaryotic cells. The nucleolus is responsible for the transcription of rRNA genes, and it plays a crucial role in the assembly of ribosomes, which are made up of rRNA and proteins. The nucleolus not only contains the necessary DNA for rRNA production but also contains enzymes and proteins that facilitate the transcription and processing of rRNA. This process is vital for ribosome assembly, as ribosomes are essential for protein synthesis in all living cells. Understanding the function of the nucleolus highlights its importance in gene expression and cellular function.

8. What role do enzymes play in metabolic pathways?

- A. They are not involved in metabolic pathways
- B. Their role is only to catalyze the final product
- C. They assist in altering specific molecules**
- D. They inhibit metabolic reactions

Enzymes play a crucial role in metabolic pathways by assisting in altering specific molecules through the process of catalysis. They act as catalysts that speed up chemical reactions without being consumed in the process. Each enzyme is specific to a particular substrate, leading to the conversion of that substrate into products through a series of steps in a metabolic pathway. By lowering the activation energy required for reactions, enzymes enable the metabolic processes to occur more efficiently and at a faster rate under physiological conditions. This specificity is fundamental because metabolic pathways involve numerous steps, each with distinct reactions and enzymes. Enzymes ensure that these reactions happen in a regulated manner, allowing for the orderly flow of metabolites through the pathway. This regulation is essential for maintaining homeostasis within the cell and responding to varying metabolic demands. In contrast to this correct response, metabolic pathways do require enzymes to function properly, and they do not just catalyze the final product nor do they inhibit reactions, but rather facilitate the transformation of various substrates through multiple intermediates. Hence, the correct assertion aligns with the essential role enzymes play in enabling and regulating metabolism.

9. What is the definition of denatured enzymes?

- A. Enzymes that have increased their activity
- B. Enzymes that have lost their functional shape**
- C. Enzymes that are activated by temperature changes
- D. Enzymes that have undergone substrate modification

Denatured enzymes refer to enzymes that have lost their functional shape due to changes in environmental conditions, such as temperature, pH, or the presence of certain chemicals. This loss of structure typically results in a disruption of the weak bonds and interactions that maintain the enzyme's specific three-dimensional conformation. Since the enzyme's activity is closely tied to its structure, any alteration that affects its shape can lead to a decrease or complete loss of its catalytic ability. In contrast, increases in enzyme activity would not pertain to denaturation, as those conditions would suggest the enzyme is functioning optimally. Additionally, while some enzymes can be activated by temperature changes, denaturation describes the irreversible process of losing shape rather than activation. Lastly, substrate modification pertains to changes in the substrate itself rather than the enzyme's conformation, which is independent of the definition of denaturation. Thus, the correct understanding of denatured enzymes is rooted in the loss of their functional shape, which impairs their biological activity.

10. What allows proteins to fold into their functional 3D shape?

- A. Weak bonds between polypeptide chains**
- B. Peptide bonds between amino acids**
- C. Interactions between side chains of amino acids**
- D. Hydrogen bonds only**

Proteins achieve their functional three-dimensional shape primarily through interactions between the side chains, or R groups, of the amino acids that make up the polypeptide chain. These interactions include a variety of forces such as hydrogen bonds, ionic bonds, hydrophobic interactions, and Van der Waals forces. The specific sequence of amino acids in a protein determines how the side chains interact with one another, resulting in the unique folding patterns essential for the protein's function. While weak bonds between polypeptide chains can influence the stability of protein structure, it is the interactions at the side chain level that enable the initial folding to form the secondary, tertiary, and quaternary structures. Peptide bonds link individual amino acids together to form a polypeptide chain, but they do not determine the folding; rather, they create the backbone that undergoes folding. As for hydrogen bonds, while they play a significant role in stabilizing the structure, focusing solely on them overlooks the importance of side chain interactions that drive the folding process. Thus, it is the comprehensive interplay of side chain interactions that is fundamental to the formation of a protein's functional three-dimensional shape.

SAMPLE

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://ap-biology.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE