

Adult Critical Care Specialty (ACCS) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What score on the Glasgow Coma Scale would a patient who is angry, combative, and withdraws to painful stimuli have?**
 - A. 6**
 - B. 7**
 - C. 8**
 - D. 9**
- 2. A 45-year-old female with multiple injuries has low urine output and high creatinine levels. What should be treated urgently?**
 - A. Congestive heart failure**
 - B. A renal failure**
 - C. Hepatic failure**
 - D. Hypervolemia**
- 3. What complication is most closely associated with prolonged bed rest in critically ill patients?**
 - A. Pulmonary embolism**
 - B. Deep vein thrombosis (DVT)**
 - C. Pressure ulcers**
 - D. Gastrointestinal bleeding**
- 4. A 18 y.o. male with a fractured femur develops confusion and dyspnea 36 hours later. What immediate intervention is advised?**
 - A. Fluid restriction**
 - B. Inhaled fentanyl**
 - C. Heparin therapy**
 - D. Low tidal volume ventilation**
- 5. A patient exhibits hypoxemia and tachypnea after surgery. What phase of ARDS are they likely in?**
 - A. Proliferative**
 - B. Exudative**
 - C. Fibrotic**
 - D. Chronic**

6. Which medication class is commonly utilized for pain management in the critical care setting?

- A. Non-steroidal anti-inflammatory drugs (NSAIDs)**
- B. Acetaminophen**
- C. Opioids**
- D. Antidepressants**

7. When assessing for shock in a patient, which physiological finding is crucial?

- A. Increased urinary output**
- B. Elevated blood glucose**
- C. Decreased peripheral pulses**
- D. Increased body temperature**

8. What is the primary concern when administering blood products to critically ill patients?

- A. Risk of transfusion reactions**
- B. Infection control**
- C. Fluid overload**
- D. Coagulation issues**

9. What is the significance of a VBG reading showing a high carbon dioxide level?

- A. Indicator of alkalosis**
- B. Indicator of hypoxemia**
- C. Indicator of normal ventilation**
- D. Indicator of respiratory acidosis**

10. If a patient has a bull neck, receding mandible, and a thyromental distance of 3 cm, what should be the next step for intubation?

- A. Use a straight laryngoscope blade**
- B. Request the difficult airway cart**
- C. Perform a Sellick maneuver**
- D. Intubate using a nasal approach**

Answers

SAMPLE

1. C
2. B
3. B
4. B
5. B
6. C
7. C
8. A
9. D
10. B

SAMPLE

Explanations

SAMPLE

1. What score on the Glasgow Coma Scale would a patient who is angry, combative, and withdraws to painful stimuli have?

- A. 6**
- B. 7**
- C. 8**
- D. 9**

To determine the Glasgow Coma Scale (GCS) score for a patient who is angry, combative, and withdraws to painful stimuli, it's important to break down the components of the GCS, which assesses three parameters: eye-opening response, verbal response, and motor response. 1. **Eye Opening Response**: The maximum score for eye-opening is 4 (spontaneous), but if the patient is only responding to painful stimuli (not spontaneously opening eyes), they would typically score 1 (none) or 2 (to pain). In this context, we will assume the patient isn't responding spontaneously and is not scoring the maximum. 2. **Verbal Response**: An angry, combative patient would likely be scoring in the range of 3 to 4 for verbal response. If they are making incomprehensible sounds or are unable to have an appropriate conversation, they might score as low as 2. In this case, they may score around 3 if they can vocalize in an angry tone. 3. **Motor Response**: A patient who withdraws to painful stimuli typically scores 4 in this domain. This indicates a purposeful movement to avoid pain, which suggests a higher level of consciousness than would be seen

2. A 45-year-old female with multiple injuries has low urine output and high creatinine levels. What should be treated urgently?

- A. Congestive heart failure**
- B. A renal failure**
- C. Hepatic failure**
- D. Hypervolemia**

In the scenario presented, the low urine output and high creatinine levels indicate acute kidney injury, commonly associated with a variety of conditions, including hypoperfusion due to dehydration or blood loss from the multiple injuries sustained by the patient. The appropriate intervention would focus on the renal failure, as it is critical to address the causes of acute kidney injury, especially in a trauma patient, to prevent further deterioration of renal function and potential complications such as electrolyte imbalances or uremia. Sustained low urine output and elevated creatinine suggest that the kidneys are not effectively filtering waste products from the blood. Treating renal failure urgently involves restoring adequate blood flow to the kidneys and addressing any underlying issues that contribute to the impaired function, such as hypovolemia. Failing to treat this condition could lead to more severe outcomes, including the need for dialysis or increased mortality. Mild-to-moderate congestive heart failure may impact renal perfusion but is not the immediate concern when acute kidney injury is present. Similarly, hepatic failure and hypervolemia may present with complications, but the acute management priority should be on restoring kidney function and addressing the acute kidney injury. Thus, the urgency in treatment should focus on the renal failure observed in this clinical scenario

3. What complication is most closely associated with prolonged bed rest in critically ill patients?

- A. Pulmonary embolism**
- B. Deep vein thrombosis (DVT)**
- C. Pressure ulcers**
- D. Gastrointestinal bleeding**

Prolonged bed rest in critically ill patients is primarily associated with the development of deep vein thrombosis (DVT). This is due to several factors that contribute to venous stasis, which is a significant risk factor for DVT. When patients are immobilized for an extended period, the normal blood flow in the legs can be disrupted. Decreased mobility can lead to increased venous pressure and sluggish circulation, promoting the formation of blood clots within the deep veins. In critically ill patients, other factors such as dehydration, hypercoagulable states related to inflammation, and potentially the use of certain medications can further increase the risk of DVT. The consequences of DVT can be severe, leading to more significant complications like pulmonary embolism if a clot dislodges and travels to the lungs, but DVT itself typically precedes this outcome and is more directly linked to immobility. While other complications of prolonged bed rest, such as pressure ulcers, are significant, they are not as directly related to the physiological changes in the venous system caused by inactivity as DVT is. Gastrointestinal bleeding can occur in critically ill patients due to stress-related mucosal disease but is not primarily a result of immobility, and pulmonary embolism

4. A 18 y.o. male with a fractured femur develops confusion and dyspnea 36 hours later. What immediate intervention is advised?

- A. Fluid restriction**
- B. Inhaled flolan**
- C. Heparin therapy**
- D. Low tidal volume ventilation**

The scenario describes an 18-year-old male with a fractured femur who develops confusion and dyspnea 36 hours post-injury, which raises concerns about potential fat embolism, a well-known complication of long bone fractures. In cases of fat embolism syndrome, patients can experience respiratory distress and neurological symptoms, typically manifesting within 1 to 3 days after the injury. Inhaled Flolan, which is a prostacyclin (i.e., a vasodilator), helps improve oxygenation by dilating the pulmonary vasculature, thereby reducing the pulmonary artery pressure and improving blood flow in the lungs. It can be particularly beneficial for patients experiencing respiratory distress due to increased pulmonary vascular resistance or inflammation, which can occur with fat embolism. The use of inhaled Flolan in this scenario aims to address the immediate respiratory compromise and facilitate better oxygen delivery to the tissues. By improving ventilation-perfusion matching in the lungs, it can help mitigate the hypoxic effects associated with fat globules obstructing pulmonary capillaries. Thus, the choice of inhaled Flolan as the immediate intervention is justified given its role in managing the respiratory symptoms linked with potential fat embolism, ultimately improving patient outcomes in this acute setting.

5. A patient exhibits hypoxemia and tachypnea after surgery. What phase of ARDS are they likely in?

- A. Proliferative**
- B. Exudative**
- C. Fibrotic**
- D. Chronic**

In the context of Acute Respiratory Distress Syndrome (ARDS), the patient exhibiting hypoxemia and tachypnea after surgery is likely in the exudative phase. This early phase, which occurs within the first week after an insult such as surgery, is characterized by the onset of inflammation in the lungs, leading to increased permeability of the alveolar-capillary membrane. This increased permeability causes fluid accumulation in the alveoli, resulting in hypoxemia due to impaired gas exchange. Tachypnea is a common respiratory response to hypoxemia, as the body attempts to compensate for the decreased oxygen levels by increasing the rate of breathing. The exudative phase also features the development of pulmonary edema and the presence of inflammatory cells in the alveoli, which contribute to the clinical symptoms observed in the patient. The subsequent phases of ARDS, such as the proliferative phase, involve the formation of granulation tissue and resolution of edema, while the fibrotic phase indicates long-term structural changes in the lungs, often leading to chronic respiratory issues. Meanwhile, chronic ARDS would denote a prolonged state of respiratory distress with established fibrosis and persistent symptoms, which are not consistent with this early postoperative scenario. Thus, the features of hypoxemia and tachypnea are most consistent with the exudative phase of ARDS.

6. Which medication class is commonly utilized for pain management in the critical care setting?

- A. Non-steroidal anti-inflammatory drugs (NSAIDs)**
- B. Acetaminophen**
- C. Opioids**
- D. Antidepressants**

Opioids are widely recognized as the primary medication class utilized for pain management in critical care settings due to their potent analgesic properties. They act on specific receptors in the brain and spinal cord to effectively diminish the perception of pain. This action makes them particularly valuable in critically ill patients who may experience severe pain from various sources, including injuries, surgical procedures, or invasive interventions. In the critical care environment, quick and effective pain relief is crucial for patient comfort and can also help facilitate other necessary treatments and interventions. Opioids, such as morphine and fentanyl, are frequently used because they can be easily titrated to achieve the desired level of analgesia and have rapid onset of action. They also provide sedation, which can be beneficial in managing patients undergoing mechanical ventilation or other distressing procedures. While other medication classes like NSAIDs and acetaminophen do play roles in pain management, they are often not the first line in critically ill patients due to their lesser potency compared to opioids. Antidepressants, on the other hand, are not primarily used for acute pain but rather for chronic pain management and mood disorders. Thus, opioids remain the cornerstone of pain management protocols in critical care.

7. When assessing for shock in a patient, which physiological finding is crucial?

- A. Increased urinary output**
- B. Elevated blood glucose**
- C. Decreased peripheral pulses**
- D. Increased body temperature**

In the context of assessing a patient for shock, the crucial physiological finding is decreased peripheral pulses. This is indicative of inadequate perfusion and can be an early sign of shock, as the body prioritizes blood flow to vital organs in response to decreased cardiac output or hypovolemia. As shock progresses, peripheral circulation becomes increasingly compromised, leading to weak or thready pulses in the extremities. The presence of decreased peripheral pulses serves as a key indicator of the severity of shock and guides further assessment and intervention. Recognition of this finding allows for timely intervention, which is critical in preventing multi-organ failure and improving patient outcomes. While the other options may reflect changes that occur in a patient's physiology, they are not as directly linked to the immediate assessment for shock. For instance, increased urinary output typically indicates good renal perfusion, which is contrary to what would be expected in shock. Elevated blood glucose levels can arise in various stress responses but are not specific to shock assessment. Increased body temperature may indicate infection or inflammation rather than providing a clear assessment of perfusion and circulatory status, which are central to diagnosing shock. Thus, monitoring peripheral pulses is paramount in the evaluation of a patient presenting with signs and symptoms suggestive of shock.

8. What is the primary concern when administering blood products to critically ill patients?

- A. Risk of transfusion reactions**
- B. Infection control**
- C. Fluid overload**
- D. Coagulation issues**

The primary concern when administering blood products to critically ill patients is the risk of transfusion reactions. This concern arises because transfusion reactions can range from mild allergic responses to severe, life-threatening reactions that may include hemolysis or anaphylaxis. Critical care patients often have hemodynamic instability, and the introduction of blood products carries the risk of exacerbating their condition if a reaction occurs. Additionally, recognizing transfusion reactions promptly and managing them appropriately is crucial in a critical care setting, where the patient's state can rapidly deteriorate. Ensuring compatibility and monitoring patients closely during and after the transfusion is vital to minimize this risk. While infection control is also a significant concern with blood products, especially given that infections can complicate the course of critically ill patients, the immediate and potentially dangerous nature of transfusion reactions generally takes precedence. Fluid overload is another concern particularly for those with existing heart or kidney failure, but the risk associated with transfusion reactions often makes it the primary focus during administration. Coagulation issues can arise from improper transfusion practices but are secondary to the acute risks posed by reactions.

9. What is the significance of a VBG reading showing a high carbon dioxide level?

- A. Indicator of alkalosis**
- B. Indicator of hypoxemia**
- C. Indicator of normal ventilation**
- D. Indicator of respiratory acidosis**

A high carbon dioxide (CO₂) level in a venous blood gas (VBG) reading is significant as it indicates respiratory acidosis. When the body produces excessive carbon dioxide or fails to eliminate it effectively through respiration, the result is an accumulation of CO₂, leading to increased acidity in the blood. This condition often occurs when there is impaired ventilation, such as in situations of airway obstruction, respiratory muscle weakness, or certain pulmonary conditions. Understanding this connection is vital in critical care, as it guides clinicians toward appropriate interventions, such as improving ventilation or addressing the underlying cause of the respiratory failure. The other options do not accurately reflect the implications of high carbon dioxide levels in a VBG. Alkalosis is associated with increased pH levels, hypoxemia refers to low oxygen levels, and normal ventilation would typically not present with high CO₂ levels, thus these do not apply in this context.

10. If a patient has a bull neck, receding mandible, and a thyromental distance of 3 cm, what should be the next step for intubation?

- A. Use a straight laryngoscope blade**
- B. Request the difficult airway cart**
- C. Perform a Sellick maneuver**
- D. Intubate using a nasal approach**

The scenario describes a patient with significant anatomical challenges to intubation, including a bull neck, receding mandible, and a short thyromental distance of 3 cm. These features raise the suspicion of a potentially difficult airway, which is supported by the limited space and possibility of poor visualization during laryngoscopy. In this context, the most prudent action to take is to request the difficult airway cart. This cart is specifically equipped with tools and devices that are valuable in managing challenging airways, including alternative intubation devices and adjuncts that can facilitate the process. Having this cart on hand ensures readiness to address any complications that may arise during intubation, thereby enhancing patient safety. The other options may not adequately address the specific concerns presented by this patient's anatomy. Using a straight laryngoscope blade or performing a Sellick maneuver may not be effective given the expected difficulty, and intubating via a nasal approach introduces additional risks, particularly in patients with potential anatomical irregularities or concerns such as trauma. Therefore, preparing for a difficult airway by utilizing the dedicated resources in the difficult airway cart is the most appropriate next step.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://adultcriticalcarespecialty.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE