Adult Critical Care Specialty (ACCS) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. Postoperatively, what therapy should be recommended for a patient with a left lower lobe infiltrate and fever?
 - A. Anti-infective agent
 - B. Beta agonist aerosol
 - C. Sustained maximal inspiration
 - D. Oral expectorant
- 2. What is the primary purpose of administering intravenous fluids in a critically ill patient?
 - A. To reduce medication side effects
 - B. To restore fluid volume and improve perfusion
 - C. To enhance nutrient absorption
 - D. To manage electrolyte imbalances
- 3. Which patient position is often used to improve oxygenation in patients with severe respiratory distress?
 - A. Supine position
 - **B.** Sitting upright
 - C. Prone position
 - D. Semi-Fowler's position
- 4. A patient exhibits hypoxemia and tachypnea after surgery. What phase of ARDS are they likely in?
 - A. Proliferative
 - **B.** Exudative
 - C. Fibrotic
 - D. Chronic
- 5. What is indicated by a blood pressure reading of 70/30 in a patient with fever and cough?
 - A. Normal blood pressure
 - **B. Severe hypotension**
 - C. Hypertension
 - D. Orthostatic hypotension

- 6. Post-operatively, Mr. Hart exhibits a 2-3 mm ST segment elevation on his ECG. This finding is indicative of?
 - A. Myocardial ischemia
 - **B.** Myocardial infarction
 - C. Myocardial injury
 - D. Normal variant
- 7. What is the best body position for patients on mechanical ventilation to minimize the risk of aspiration?
 - A. Supine position
 - **B.** Trendelenburg position
 - C. Semi-fowler's position
 - D. Prone position
- 8. In the event of a cardiac arrest, what is the recommended compression rate during cardiopulmonary resuscitation (CPR)?
 - A. 80 to 100 compressions per minute
 - B. 100 to 120 compressions per minute
 - C. 120 to 140 compressions per minute
 - D. 140 to 160 compressions per minute
- 9. Which parameter would indicate right heart failure after evaluating CVP and PAP readings?
 - A. High CVP, low PAP
 - B. High PAP and high PCWP
 - C. Normal CVP, normal PAP
 - D. Low CVP, high PAP
- 10. In adult critical care, what is the primary purpose of a neurologic assessment?
 - A. To evaluate motor skills
 - B. To determine medication effectiveness
 - C. To evaluate consciousness and detect potential brain injury
 - D. To assess nutritional status

Answers

- 1. A 2. B

- 3. D 4. B 5. B 6. B 7. C 8. B
- 9. A 10. C

Explanations

1. Postoperatively, what therapy should be recommended for a patient with a left lower lobe infiltrate and fever?

- A. Anti-infective agent
- B. Beta agonist aerosol
- C. Sustained maximal inspiration
- D. Oral expectorant

For a patient who presents with a left lower lobe infiltrate and fever postoperatively, the recommended therapy is an anti-infective agent. The presence of an infiltrate, combined with fever, suggests a possible infectious process, such as pneumonia, which is common in postoperative patients due to factors like impaired lung function, decreased mobility, and potential aspiration events. Utilizing anti-infective agents (antibiotics) is essential in addressing any potential bacterial infection that may be indicated by the infiltrate on imaging. Timely administration of these medications can prevent the progression of a respiratory infection, improve the patient's overall recovery, and reduce the risk of complications, such as sepsis. Other therapies, while beneficial in various contexts, do not directly address the underlying infection indicated by the findings. Beta agonist aerosols may be useful for bronchospasm or wheezing but are not first-line for resolving an infection. Sustained maximal inspiration techniques are beneficial for promoting lung expansion and preventing atelectasis but do not directly treat infection. Oral expectorants can assist in clearing mucus but are not sufficient on their own if an infection is present. Therefore, starting an anti-infective agent is the most appropriate course of action in this scenario.

2. What is the primary purpose of administering intravenous fluids in a critically ill patient?

- A. To reduce medication side effects
- B. To restore fluid volume and improve perfusion
- C. To enhance nutrient absorption
- D. To manage electrolyte imbalances

The primary purpose of administering intravenous fluids in a critically ill patient is to restore fluid volume and improve perfusion. In critically ill scenarios, patients may experience dehydration, hemorrhage, or severe sepsis, leading to inadequate circulatory volume and compromised organ perfusion. Administering IV fluids helps to replenish lost fluid, maintain blood pressure, and optimize blood flow to vital organs, which is crucial for ensuring adequate oxygen delivery and metabolic function. While managing electrolyte imbalances and enhancing nutrient absorption are also important considerations in critical care, these are often secondary to the immediate need for fluid resuscitation. Critically ill patients require prompt restoration of blood volume and hemodynamic stability to prevent complications such as shock, organ failure, or death. Thus, fluid resuscitation is a foundational component of managing critically ill patients.

- 3. Which patient position is often used to improve oxygenation in patients with severe respiratory distress?
 - A. Supine position
 - B. Sitting upright
 - C. Prone position
 - **D. Semi-Fowler's position**

The semi-Fowler's position is often utilized to enhance oxygenation in patients experiencing severe respiratory distress. This position involves the patient being placed at a slight angle, typically between 30 to 45 degrees. Elevating the upper body can reduce pressure on the diaphragm, allowing for better lung expansion and ease of breathing. This facilitates increased chest wall compliance and reduces the work of breathing, which can be critical in managing respiratory distress. Additionally, the semi-Fowler's position can help improve venous return, decrease the risk of aspiration, and promote effective diaphragmatic movement. These factors collectively contribute to optimized gas exchange and better oxygenation, making this position beneficial for patients with respiratory challenges. In contrast, the supine position may restrict lung expansion and increase the work of breathing, especially in patients with respiratory issues. The sitting upright and prone positions can also be beneficial for certain conditions or specific patient needs but are not as universally applicable for all patients in distress as the semi-Fowler's position. The semi-Fowler's position is widely recommended in acute care settings for its balance between comfort and functional benefits in respiratory distress situations.

- 4. A patient exhibits hypoxemia and tachypnea after surgery. What phase of ARDS are they likely in?
 - A. Proliferative
 - **B.** Exudative
 - C. Fibrotic
 - D. Chronic

In the context of Acute Respiratory Distress Syndrome (ARDS), the patient exhibiting hypoxemia and tachypnea after surgery is likely in the exudative phase. This early phase, which occurs within the first week after an insult such as surgery, is characterized by the onset of inflammation in the lungs, leading to increased permeability of the alveolar-capillary membrane. This increased permeability causes fluid accumulation in the alveoli, resulting in hypoxemia due to impaired gas exchange. Tachypnea is a common respiratory response to hypoxemia, as the body attempts to compensate for the decreased oxygen levels by increasing the rate of breathing. The exudative phase also features the development of pulmonary edema and the presence of inflammatory cells in the alveoli, which contribute to the clinical symptoms observed in the patient. The subsequent phases of ARDS, such as the proliferative phase, involve the formation of granulation tissue and resolution of edema, while the fibrotic phase indicates long-term structural changes in the lungs, often leading to chronic respiratory issues. Meanwhile, chronic ARDS would denote a prolonged state of respiratory distress with established fibrosis and persistent symptoms, which are not consistent with this early postoperative scenario. Thus, the features of hypoxemia and tach

- 5. What is indicated by a blood pressure reading of 70/30 in a patient with fever and cough?
 - A. Normal blood pressure
 - **B. Severe hypotension**
 - C. Hypertension
 - D. Orthostatic hypotension

A blood pressure reading of 70/30 is indicative of severe hypotension, which is characterized by significantly low blood pressure that can compromise organ perfusion and lead to shock. In a normal physiological context, blood pressure readings typically range from 90/60 mmHg to 120/80 mmHg for adults. A systolic reading of 70 mmHg is critically low, especially in conjunction with a diastolic reading of 30 mmHg. In this scenario, the patient also presents with fever and cough, which could suggest an underlying infection, such as sepsis or pneumonia. Severe hypotension can occur as a result of these conditions, especially if they lead to septic shock, where the body is unable to maintain adequate blood pressure due to systemic infection and vascular changes. Recognizing this reading as severe hypotension is crucial for timely intervention, such as fluid resuscitation and vasopressor support, to prevent further hemodynamic instability and potential organ failure. Understanding the clinical importance of such a blood pressure reading adds to the overall assessment of a patient's status, enabling appropriate and potentially life-saving medical responses.

- 6. Post-operatively, Mr. Hart exhibits a 2-3 mm ST segment elevation on his ECG. This finding is indicative of?
 - A. Myocardial ischemia
 - **B.** Myocardial infarction
 - C. Myocardial injury
 - D. Normal variant

The presence of 2-3 mm ST segment elevation on an ECG post-operatively could suggest a range of conditions, but when considering the clinical context, it is particularly important to differentiate whether this finding indicates a pathological process or a physiological response. In this case, a 2-3 mm ST segment elevation after surgery is often attributed to myocardial injury. This can occur due to various factors associated with the surgical process, such as cardiac stress during the procedure, reperfusion injury, or other physical stressors that can affect cardiac function. It is crucial to recognize that myocardial injury refers to damage to the heart muscle that does not necessarily meet the criteria for a myocardial infarction, where there is significant cell death typically resulting from prolonged ischemia. ST elevation occurring in the context of post-operative monitoring can indicate that there is some degree of non-specific myocardial injury occurring, rather than just ischemia or infarction. Thus, while ST segment changes can also be seen in ischemia and infarction, the duration and context (such as post-operative monitoring) are significant indicators that help clinicians understand that this may be indicative of myocardial injury rather than an acute ischemic event. This understanding is essential for appropriate monitoring and management in the post-operative setting.

- 7. What is the best body position for patients on mechanical ventilation to minimize the risk of aspiration?
 - A. Supine position
 - **B.** Trendelenburg position
 - C. Semi-fowler's position
 - D. Prone position

The semi-Fowler's position is considered the best body position for patients on mechanical ventilation to minimize the risk of aspiration due to its anatomical advantages. In this position, the patient is generally seated at an elevation of about 30 to 45 degrees. This elevated posture assists in preventing the gravitational flow of gastric contents back into the esophagus, effectively reducing the risk of aspiration-particularly important in patients who are unable to protect their airways. In addition to aspiration risks, the semi-Fowler's position can also aid in improving respiratory mechanics by enhancing lung expansion and facilitating better ventilation-perfusion matching. The slight elevation also helps reduce pressure on the diaphragm, which can improve overall breathing efficiency in mechanically ventilated patients. This position contrasts with lying fully supine, where the risk of aspiration increases because the esophagus is more aligned horizontally with the trachea. The Trendelenburg position, which involves lying supine with the legs elevated higher than the head, can lead to increased intra-abdominal pressure, further complicating ventilation and increasing aspiration risk. The prone position, while beneficial in certain circumstances such as improving oxygenation, does not provide the same protective mechanism against aspiration as the semi-Fowler's position does.

- 8. In the event of a cardiac arrest, what is the recommended compression rate during cardiopulmonary resuscitation (CPR)?
 - A. 80 to 100 compressions per minute
 - B. 100 to 120 compressions per minute
 - C. 120 to 140 compressions per minute
 - D. 140 to 160 compressions per minute

The recommended compression rate during cardiopulmonary resuscitation (CPR) for adults experiencing cardiac arrest is between 100 to 120 compressions per minute. This rate is supported by guidelines from organizations such as the American Heart Association, which emphasize the importance of high-quality chest compressions to improve the chances of survival. Maintaining this specific compression rate is critical because compressions at this speed are effective in creating adequate blood flow to vital organs, including the brain and heart, until advanced medical help arrives or the heart rhythm is restored. Compressions that are too slow may not generate sufficient blood flow to sustain life, while rates that exceed 120 compressions per minute can lead to poor quality compressions and decrease overall effectiveness. Therefore, adhering to the 100 to 120 compressions per minute guideline strikes a balance that maximizes the chances of a positive outcome during a cardiac arrest scenario.

- 9. Which parameter would indicate right heart failure after evaluating CVP and PAP readings?
 - A. High CVP, low PAP
 - B. High PAP and high PCWP
 - C. Normal CVP, normal PAP
 - D. Low CVP, high PAP

Right heart failure is characterized by elevated pressures in the right heart and the systemic circulation, and this can often be assessed by the Central Venous Pressure (CVP) and Pulmonary Artery Pressure (PAP) readings. A high CVP indicates increased pressure in the right atrium and systemic venous return, which can occur when the right ventricle fails to pump effectively, leading to congestion in the venous system. In this context, a high CVP paired with a low PAP suggests that the right heart is failing while the pulmonary circulation may not be significantly affected or may be compensating to some extent. Therefore, the high CVP reflects the burden on the right side of the heart, whereas a low PAP indicates that despite the right heart's dysfunction, there isn't yet significant pressure buildup in the pulmonary circulation, which would typically be seen in left heart failure or global heart failure. This combination is crucial in differentiating the nature of heart failure. A high PAP and high pulmonary capillary wedge pressure (PCWP) would indicate left heart failure rather than right heart failure, and normal CVP and PAP would suggest no heart failure. A low CVP with high PAP could indicate other conditions, such as pulmonary hypertension, rather than isolated

- 10. In adult critical care, what is the primary purpose of a neurologic assessment?
 - A. To evaluate motor skills
 - B. To determine medication effectiveness
 - C. To evaluate consciousness and detect potential brain injury
 - D. To assess nutritional status

The primary purpose of a neurologic assessment in adult critical care is to evaluate consciousness and detect potential brain injury. This assessment is crucial in critically ill patients, as changes in neurological status can provide important information about the patient's overall condition and aid in the diagnosis and management of various neurological conditions. By focusing on the level of consciousness, healthcare providers can identify alterations in awareness or responsiveness, which may indicate issues such as increased intracranial pressure, stroke, or traumatic brain injuries. This early detection is vital for timely intervention and can significantly affect patient outcomes. In contrast, while evaluating motor skills is part of a broader neurologic assessment, it is not the primary goal. Assessing medication effectiveness generally pertains to pharmacological management rather than neurologic function. Finally, nutritional status assessment is related to the patient's overall care and recovery but does not fall under the specific aims of a neurologic assessment. Thus, the emphasis on evaluating consciousness and potential brain injury is what underscores the significance of this type of assessment in critical care settings.