

ACSM Health Fitness Specialist Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Under resting conditions, what is the typical stroke volume for a male weighing 70 kg?**
 - A. 50 mL**
 - B. 70 mL**
 - C. 90 mL**
 - D. 110 mL**
- 2. Which condition describes deficient oxygenation of the blood?**
 - A. Hypercapnia**
 - B. Hypoxemia**
 - C. Respiratory acidosis**
 - D. Hyperoxemia**
- 3. What is defined as the amount of blood ejected from the heart per minute?**
 - A. Stroke volume**
 - B. Cardiac output**
 - C. Blood pressure**
 - D. Heart rate**
- 4. What body fat percentage is considered obese for men?**
 - A. Greater than 20%**
 - B. Greater than 25%**
 - C. Greater than 30%**
 - D. Greater than 35%**
- 5. What complication is known as a bulging of the ventricular wall after a myocardial infarction?**
 - A. Fibrosis**
 - B. Aneurysm**
 - C. Cardiomyopathy**
 - D. Ischemia**

6. What is the Karvonen Formula primarily used for?

- A. Calculating resting heart rate**
- B. Determining target heart rate**
- C. Assessing maximum heart rate**
- D. Estimating caloric burn**

7. What category of drugs do Lidocaine and Mexiletine belong to?

- A. Class 1A drugs**
- B. Class 1B drugs**
- C. Class 2 drugs**
- D. Class 3 drugs**

8. Which of the following is NOT a behavioral process in the Transtheoretical Model?

- A. Counter conditioning**
- B. Self-liberation**
- C. Reinforcement management**
- D. Dramatic relief**

9. What occurs during the QRS-complex of the ECG?

- A. Ventricular muscle repolarization**
- B. Atrial depolarization**
- C. Ventricular muscle depolarization**
- D. Atrioventricular node activation**

10. How many bones are there in the human skull?

- A. 22 bones**
- B. 29 bones**
- C. 30 bones**
- D. 28 bones**

Answers

SAMPLE

1. B
2. B
3. B
4. B
5. B
6. B
7. B
8. D
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. Under resting conditions, what is the typical stroke volume for a male weighing 70 kg?

- A. 50 mL
- B. 70 mL**
- C. 90 mL
- D. 110 mL

The typical stroke volume for a resting male weighing around 70 kg is approximately 70 mL. Stroke volume is defined as the amount of blood ejected by the heart during each beat. In healthy, resting adults, this value generally ranges from 60 to 100 mL, with 70 mL being a common average for a man of this weight. Physiological factors such as body size, fitness level, and overall health can influence this measurement. A male weighing 70 kg typically demonstrates a stroke volume that reflects a balance between cardiac output and physiological efficiency during a resting state, leading to an average around 70 mL. This is significant in the context of assessing cardiovascular health and performance, as stroke volume is crucial in understanding how effectively the heart is pumping blood to meet the body's needs. Lower values like 50 mL may suggest issues such as inadequate cardiac function or low blood volume, whereas higher values like 90 mL or 110 mL, while possible in well-trained athletes, are less common for the general population at rest. Therefore, 70 mL is the most fitting and typical figure for this scenario.

2. Which condition describes deficient oxygenation of the blood?

- A. Hypercapnia
- B. Hypoxemia**
- C. Respiratory acidosis
- D. Hyperoxemia

Hypoxemia is the condition that specifically refers to deficient oxygenation of the blood, characterized by lower-than-normal levels of oxygen in the arterial blood. This can result from various factors, such as lung diseases, reduced oxygen availability, or issues with blood circulation. In clinical settings, hypoxemia is often quantified using arterial blood gas measurements, where a decrease in partial pressure of oxygen (PaO₂) indicates a significant deficiency in the oxygen levels that are critical for normal cellular function. Addressing hypoxemia is essential since adequate oxygenation is crucial for maintaining the body's metabolic processes, and prolonged hypoxemia can lead to serious complications, including organ dysfunction. The other conditions listed pertain to different aspects of respiratory function or gas exchange. For instance, hypercapnia relates to the elevated levels of carbon dioxide in the blood, which can occur due to hypoventilation or respiratory failure. Respiratory acidosis is a condition that arises from an accumulation of carbon dioxide, leading to a decrease in blood pH, and is not directly indicative of oxygen levels. Hyperoxemia, on the other hand, refers to an excess of oxygen in the blood, which is the opposite of hypoxemia. Thus, hypoxemia is the precise

3. What is defined as the amount of blood ejected from the heart per minute?

- A. Stroke volume**
- B. Cardiac output**
- C. Blood pressure**
- D. Heart rate**

Cardiac output is defined as the amount of blood ejected from the heart per minute, which reflects the overall efficiency and performance of the heart in meeting the body's circulatory needs. It is calculated by multiplying stroke volume (the amount of blood pumped from the heart with each beat) by heart rate (the number of beats per minute). This measure is crucial in assessing cardiovascular health and fitness, as it shows how effectively the heart can supply oxygenated blood to the muscles and organs during various activities, including rest and exercise. Understanding cardiac output is fundamental for health and fitness professionals, as it aids in evaluating an individual's cardiovascular fitness level and determining appropriate exercise intensities. Monitoring cardiac output can also be vital in clinical settings, particularly when managing heart conditions, as it can indicate changes in heart function. The other terms listed do not define the volume of blood pumped by the heart per minute. Stroke volume focuses solely on the volume per beat, blood pressure relates to the force exerted by circulating blood on the walls of blood vessels, and heart rate pertains to the number of beats rather than the volume of blood ejected. Each of these factors is interrelated but serves a different role in understanding heart function.

4. What body fat percentage is considered obese for men?

- A. Greater than 20%**
- B. Greater than 25%**
- C. Greater than 30%**
- D. Greater than 35%**

In the context of body fat percentage classifications, a body fat percentage greater than 25% for men is considered obese. This threshold is part of the body composition standards set by health organizations, which categorize body fat levels into different ranges to help assess health risks. Body fat percentages above this level indicate higher amounts of adipose tissue in relation to lean mass, which can lead to an increased risk of various health issues such as heart disease, diabetes, and certain types of cancer. It is crucial for health professionals to be aware of these classifications, as they can guide individuals toward appropriate lifestyle modifications and interventions aimed at improving overall health and reducing obesity-related complications. The choice reflecting a threshold greater than 25% aligns with established guidelines, making it the correct response. Understanding these benchmarks is fundamental for fitness professionals when evaluating health status and designing effective fitness programs.

5. What complication is known as a bulging of the ventricular wall after a myocardial infarction?

- A. Fibrosis**
- B. Aneurysm**
- C. Cardiomyopathy**
- D. Ischemia**

A bulging of the ventricular wall after a myocardial infarction refers to a condition where a portion of the heart muscle becomes weak and stretches, resulting in an abnormal outpouching or dilation of the ventricular wall. This condition is commonly known as a ventricular aneurysm. A ventricular aneurysm typically develops in the region of the heart that has sustained damage due to the infarction, resulting in a weakened area that bulges out during the contraction of the heart. This can lead to complications such as heart failure, arrhythmias, and increased risk of thrombus formation within the aneurysm due to stagnant blood flow. Other options provided describe different conditions that do not specifically refer to the post-myocardial infarction bulging: fibrosis pertains to the formation of scar tissue; cardiomyopathy refers to diseases of the heart muscle that may affect its size, shape, and function; and ischemia is reduced blood flow to the heart tissue, which can contribute to myocardial infarction but does not describe the bulging phenomenon directly.

6. What is the Karvonen Formula primarily used for?

- A. Calculating resting heart rate**
- B. Determining target heart rate**
- C. Assessing maximum heart rate**
- D. Estimating caloric burn**

The Karvonen Formula is specifically designed to help individuals determine their target heart rate for exercise. This formula takes into account both the individual's resting heart rate and maximum heart rate, allowing for a more personalized approach to training intensity. By using this method, one can calculate the appropriate exercise intensity needed to achieve specific cardiovascular benefits, ensuring that workouts remain effective and safe. The formula operates on the principle that training at a specific percentage of the heart rate reserve (the difference between resting and maximum heart rate) can help in optimizing the cardiovascular improvement while engaging in exercise. This personalized target ensures that individuals can work within their optimal training zones tailored to their individual fitness levels and goals. In contrast, while resting heart rate does play a role in the Karvonen Formula, it is not the primary focus of its application. Similarly, maximum heart rate assessment is a component of the formula, but it serves merely as a reference point rather than the formula's purpose. Lastly, estimating caloric burn is unrelated to the Karvonen Formula, which focuses specifically on heart rate rather than caloric expenditure. Thus, determining target heart rate is the central aim of the Karvonen Formula.

7. What category of drugs do Lidocaine and Mexiletine belong to?

- A. Class 1A drugs**
- B. Class 1B drugs**
- C. Class 2 drugs**
- D. Class 3 drugs**

Lidocaine and Mexiletine are classified as Class 1B antiarrhythmic drugs. This classification is significant because Class 1B drugs primarily target sodium channels in the heart and are particularly effective in treating ventricular arrhythmias. They work by stabilizing the cardiac cell membrane, which reduces the excitability of cardiac tissues. Class 1B drugs are unique in that they have a rapid association and dissociation with sodium channels, making them more effective during depolarization phases of the cardiac action potential. This allows them to be particularly useful in emergency situations such as ventricular tachycardia or ventricular fibrillation, where fast action is required. Understanding the category is essential for healthcare professionals to appropriately choose antiarrhythmic medications based on the type of arrhythmia being treated and the patient's specific condition. The distinction among the class categories helps in implementing effective pharmacotherapy in clinical practice.

8. Which of the following is NOT a behavioral process in the Transtheoretical Model?

- A. Counter conditioning**
- B. Self-liberation**
- C. Reinforcement management**
- D. Dramatic relief**

In the context of the Transtheoretical Model (TTM), behaviors are crucial for facilitating change during various stages of an individual's readiness to change. The behavioral processes specifically focus on the actions and strategies that individuals can utilize to alter their health behaviors. Out of the options provided, dramatic relief does not fall into the category of behavioral processes. Dramatic relief, instead, is classified under emotional processes within the TTM. It involves experiencing and expressing feelings related to the problem behavior, which helps in increasing awareness of risks and engaging emotionally with the need for change. This emotional aspect can motivate individuals by drawing attention to potential consequences and instilling a sense of urgency. In contrast, the other options, including counter conditioning, self-liberation, and reinforcement management, are all defined as behavioral processes. Counter conditioning involves substituting healthier behaviors for unhealthy ones, self-liberation refers to the process of committing to change, and reinforcement management includes strategies for rewarding oneself for engaging in positive behaviors. Therefore, dramatic relief is the correct choice as it represents an emotional rather than behavioral process in the Transtheoretical Model.

9. What occurs during the QRS-complex of the ECG?

- A. Ventricular muscle repolarization
- B. Atrial depolarization
- C. Ventricular muscle depolarization**
- D. Atrioventricular node activation

The QRS complex of the electrocardiogram (ECG) represents the electrical activity associated with the depolarization of the ventricles. When the ventricles depolarize, this electrical event causes them to contract, which is essential for pumping blood to the lungs and the rest of the body. During this phase of the cardiac cycle, the electrical impulse travels through the bundle of His and Purkinje fibers after originating from the atrioventricular (AV) node, ultimately triggering ventricular contraction. This complex is crucial in evaluating the heart's electrical conduction system and overall cardiac health, as abnormalities in the QRS complex can indicate various cardiac issues, such as ventricular hypertrophy or conduction block. Understanding this process is fundamental for assessing cardiac function and recognizing pathological conditions where normal depolarization may be impeded or altered.

10. How many bones are there in the human skull?

- A. 22 bones
- B. 29 bones**
- C. 30 bones
- D. 28 bones

The human skull is made up of 22 bones that can be grouped into two main categories: the cranial bones and the facial bones. The cranial bones, which protect the brain, consist of 8 bones, while the facial bones, which support the structure of the face, include 14 bones. When these are added together, the total comes to 22 bones. The answer of 29 bones misrepresents the actual anatomy of the skull, as there are no additional bones categorized within the typical structure of the adult human skull beyond the recognized 22. Choices that suggest a higher count may also include bones that are unrelated to the skull itself or suggest counts that mistakenly combine other skeletal structures with the skull.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://acsmhealthfitnesss.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE