

ACSM Health Fitness Specialist Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. Which type of fatigue is directly related to decreased voluntary efforts during exercise?**
 - A. Peripheral fatigue**
 - B. Central fatigue**
 - C. Muscle fatigue**
 - D. Neuromuscular fatigue**
- 2. During marathon running, which type of muscle fibers are primarily recruited?**
 - A. Type I**
 - B. Type IIa**
 - C. Type IIb**
 - D. Type III**
- 3. What is the typical heart rate associated with atrial flutter?**
 - A. 60-100 beats per minute**
 - B. 100-120 beats per minute**
 - C. 250-350 beats per minute**
 - D. 120-180 beats per minute**
- 4. What intensity percentage is recommended for aerobic exercise in individuals with hypertension?**
 - A. 20-30%**
 - B. 30-50%**
 - C. 40-70%**
 - D. 70-90%**
- 5. Which of the following best defines restrictive lung disease?**
 - A. A disorder that increases lung volume**
 - B. A loss of functioning of the alveoli-capillary unit**
 - C. A condition that leads to airway obstruction**
 - D. A chronic inflammation of airways**

6. What is the formula to convert mph to meters/minute?

- A. Divide by 26.8**
- B. Subtract 26.8**
- C. Add 26.8**
- D. Multiply by 26.8**

7. What condition describes the loss of elasticity in the arteries?

- A. Atherosclerosis**
- B. Arteriosclerosis**
- C. Thrombosis**
- D. Angina**

8. Which of the following is the largest component of cardiac output during exercise?

- A. Heart Rate**
- B. Stroke Volume**
- C. Blood Pressure**
- D. Oxygen Consumption**

9. For diabetes management, what fasting glucose level would contraindicate exercise?

- A. Greater than 150 mg/dL**
- B. Greater than 200 mg/dL with ketones**
- C. Greater than 250 mg/dL with ketones or greater than 300 mg/dL without ketones**
- D. Above 400 mg/dL regardless of ketones**

10. Cardiorespiratory fitness is defined as the capacity of which systems to use oxygen?

- A. The heart, blood vessels, and digestive system**
- B. The heart, blood vessels, respiratory system, and tissue metabolic systems**
- C. The lungs, heart, and endocrine system**
- D. The heart, kidneys, and lymphatic system**

Answers

SAMPLE

- 1. B**
- 2. A**
- 3. C**
- 4. C**
- 5. B**
- 6. D**
- 7. B**
- 8. A**
- 9. C**
- 10. B**

SAMPLE

Explanations

SAMPLE

1. Which type of fatigue is directly related to decreased voluntary efforts during exercise?

- A. Peripheral fatigue**
- B. Central fatigue**
- C. Muscle fatigue**
- D. Neuromuscular fatigue**

Central fatigue is characterized by a reduction in the neural drive or voluntary efforts of the central nervous system to activate the muscles during exercise. This type of fatigue occurs when the brain and spinal cord are unable to produce the required motor output, leading to decreased muscle activation and performance. Central fatigue often results from extended periods of high-intensity exercise, causing mental fatigue, depletion of neurotransmitters, or changes in motor unit recruitment patterns. It's important to understand that while peripheral fatigue involves mechanisms at the muscle level, such as energy depletion and accumulation of lactate, it does not directly affect the brain's ability to send signals to the muscles. On the other hand, central fatigue influences how motivated or capable an individual feels to continue exercising, which directly decreases voluntary efforts.

2. During marathon running, which type of muscle fibers are primarily recruited?

- A. Type I**
- B. Type IIa**
- C. Type IIb**
- D. Type III**

During marathon running, the primary type of muscle fibers recruited are Type I fibers, often referred to as slow-twitch fibers. These fibers are specialized for endurance activities, offering increased resistance to fatigue and the ability to sustain prolonged periods of activity. Type I fibers have a higher density of mitochondria and capillaries, allowing for efficient aerobic metabolism. This means they utilize oxygen to generate energy through the combustion of glucose and fats, making them ideal for long-duration exercises such as marathon running. Additionally, they have a lower force production compared to faster-twitch fibers, but their endurance capabilities are what make them essential for prolonged efforts like a marathon. In contrast, Type II fibers, which include both Type IIa (fast-twitch oxidative) and Type IIb (fast-twitch glycolytic), are more suited for short bursts of strength or speed due to their ability to produce greater force and power in a shorter time. However, they fatigue more quickly than Type I fibers, which is why they are not the primary fibers recruited for endurance events like marathon running. Understanding the characteristics and applications of each muscle fiber type provides insight into athletic performance and the specific demands of different types of activity. In marathon running, the reliance on Type I fibers supports the

3. What is the typical heart rate associated with atrial flutter?

- A. 60-100 beats per minute
- B. 100-120 beats per minute
- C. 250-350 beats per minute**
- D. 120-180 beats per minute

The typical heart rate associated with atrial flutter is generally characterized by a rapid atrial rate of 250-350 beats per minute. This arrhythmia results from a reentrant circuit in the atria, typically in the right atrium, leading to the rapid and regular contracting of the atria. While the ventricular response can vary depending on factors such as conduction through the atrioventricular (AV) node, the hallmark of atrial flutter is the atrial rate falling within that range. When considering the other heart rate ranges provided, they tend to represent different situations or types of arrhythmias. For instance, 60-100 beats per minute is considered normal sinus rhythm. Heart rates of 100-120 beats per minute might indicate mild tachycardia, which is not specifically indicative of atrial flutter. Rates of 120-180 beats per minute could be associated with conditions like atrial fibrillation with a rapid ventricular response, but again, these do not specifically define atrial flutter's typical atrial rate. Thus, recognizing the fast and regular rhythm of atrial flutter at 250-350 beats per minute is crucial for accurate diagnosis and management.

4. What intensity percentage is recommended for aerobic exercise in individuals with hypertension?

- A. 20-30%
- B. 30-50%
- C. 40-70%**
- D. 70-90%

For individuals with hypertension, the recommended intensity for aerobic exercise typically falls within the range of 40-70% of their heart rate reserve or VO₂ reserve. This moderate intensity is beneficial as it helps to improve cardiovascular fitness while not placing excessive strain on the heart. Engaging in exercise at this level can lead to improved blood pressure control and overall cardiovascular health without the risks associated with higher intensity levels, which may not be as safe or effective for this population. Moderate-intensity aerobic exercise has been shown to promote significant health benefits, including reductions in systolic and diastolic blood pressure. It is important for individuals with hypertension to exercise within this recommended intensity range to maximize the benefits while minimizing the risk of adverse effects such as elevated blood pressure during high-intensity activities.

5. Which of the following best defines restrictive lung disease?

- A. A disorder that increases lung volume**
- B. A loss of functioning of the alveoli-capillary unit**
- C. A condition that leads to airway obstruction**
- D. A chronic inflammation of airways**

Restrictive lung disease is best defined as a condition characterized by a loss of functioning of the alveoli-capillary unit, which impacts the lungs' ability to expand properly. When the alveoli and capillary systems are compromised, the lungs cannot inflate fully, leading to reduced total lung capacity. This condition differs fundamentally from other types of lung diseases, particularly obstructive lung diseases, which involve airways becoming narrowed or blocked, affecting airflow rather than lung volume. In restrictive lung disease, factors such as fibrosis, scarring, or inflammation of lung tissue impede lung expansion, thereby limiting the amount of air that can be taken in even though the airways may remain unobstructed. Consequently, individuals often experience difficulty in taking deep breaths and may have reduced exercise tolerance, along with symptoms like shortness of breath. The other options refer to different respiratory conditions. Airway obstruction describes obstructive lung diseases, which are characterized by increased resistance in the airways, making it difficult to exhale air from the lungs. Conditions leading to inflammation of the airways typically relate to asthma or chronic bronchitis, also distinct from the restrictive pattern. Additionally, a disorder that increases lung volume would be contrary to the definition of restrictive lung disease, highlighting the importance of understanding the

6. What is the formula to convert mph to meters/minute?

- A. Divide by 26.8**
- B. Subtract 26.8**
- C. Add 26.8**
- D. Multiply by 26.8**

To convert miles per hour (mph) to meters per minute, the correct approach involves understanding the relationship between miles, meters, and time. One mile is equivalent to approximately 1609.34 meters, and an hour consists of 60 minutes. Thus, to convert mph into meters per minute, you need to convert miles to meters and hours to minutes. When you multiply the speed in mph by 1609.34, you convert the distance from miles to meters. Simultaneously, dividing by 60 transforms the time from hours to minutes. Therefore, the calculation in essence is as follows: 1. Convert from miles to meters: 1 mile = 1609.34 meters. 2. Convert hours to minutes: 1 hour = 60 minutes. Combining these factors together, to convert mph to meters per minute, the formula is: $(\text{mph} \times 1609.34) / 60$. This results in the multiplication of mph by a factor to perform the conversion correctly. When expressed succinctly in terms of a conversion factor for the sake of simplicity, the conversion effectively comes down to multiplying the speed in mph by 26.8 (since 1609.34 divided by 60 is approximately 26).

7. What condition describes the loss of elasticity in the arteries?

- A. Atherosclerosis**
- B. Arteriosclerosis**
- C. Thrombosis**
- D. Angina**

The loss of elasticity in the arteries is best described by arteriosclerosis. This condition involves the thickening and hardening of the arterial walls, which leads to a decrease in their elastic properties. As the arteries become less elastic, they are less able to expand in response to pulsatile blood flow, which can contribute to increased blood pressure and other cardiovascular issues. In contrast, atherosclerosis specifically refers to the buildup of plaques (cholesterol, fat, and other substances) within the arteries, which can narrow the arterial lumen but is a distinct process from the generalized stiffening seen in arteriosclerosis. Thrombosis refers to the formation of a blood clot within a blood vessel, while angina is a symptom (chest pain) that arises from insufficient blood flow to the heart muscle, often caused by underlying conditions like atherosclerosis. Understanding these distinctions is crucial for recognizing the specific characteristics and implications of each cardiovascular condition.

8. Which of the following is the largest component of cardiac output during exercise?

- A. Heart Rate**
- B. Stroke Volume**
- C. Blood Pressure**
- D. Oxygen Consumption**

During exercise, heart rate is indeed the largest component of cardiac output, particularly as physical activity intensity increases. Cardiac output, which is the total volume of blood the heart pumps per minute, is calculated as the product of heart rate and stroke volume. While stroke volume, the amount of blood ejected by the heart with each beat, plays a crucial role in determining cardiac output, heart rate is significantly elevated during exercise, contributing a large proportion of the increase in overall cardiac output. As exercise intensity increases, heart rate tends to rise more dramatically compared to stroke volume, especially in trained individuals where stroke volume may have a limit due to various physiological constraints. Therefore, during high-intensity exercise, the augmentation of heart rate is a key factor that enhances cardiac output to meet the metabolic demands of the body, supplying more oxygen and nutrients to the working muscles. The other options - stroke volume, blood pressure, and oxygen consumption - are important for cardiovascular function during exercise, but they do not increase to the same extent as heart rate in response to exercise. While stroke volume does increase with training and can follow heart rate to a degree, its overall contribution remains lower than that of heart rate during intense activities. Blood pressure can rise during exercise, but it is not

9. For diabetes management, what fasting glucose level would contraindicate exercise?

- A. Greater than 150 mg/dL**
- B. Greater than 200 mg/dL with ketones**
- C. Greater than 250 mg/dL with ketones or greater than 300 mg/dL without ketones**
- D. Above 400 mg/dL regardless of ketones**

In diabetes management, exercise can significantly impact blood glucose levels, and it's crucial to understand when it's unsafe to engage in physical activity. A fasting glucose level greater than 250 mg/dL with ketones or greater than 300 mg/dL without ketones is considered a contraindication for exercise. When blood glucose levels rise to this threshold, particularly when ketones are present, it indicates that the body is in a state of ketosis, which can lead to diabetic ketoacidosis (DKA), a serious condition that can be life-threatening. Exercising under these conditions can exacerbate hyperglycemia and ketone production, leading to further complications. Therefore, a cutoff of 250 mg/dL with ketones or 300 mg/dL without ketones is a protective guideline to ensure patient safety. It is important for individuals managing diabetes to monitor their blood glucose levels closely and consult with healthcare professionals before engaging in physical activity if these thresholds are met.

10. Cardiorespiratory fitness is defined as the capacity of which systems to use oxygen?

- A. The heart, blood vessels, and digestive system**
- B. The heart, blood vessels, respiratory system, and tissue metabolic systems**
- C. The lungs, heart, and endocrine system**
- D. The heart, kidneys, and lymphatic system**

Cardiorespiratory fitness is fundamentally about the efficiency of several physiological systems working together to deliver oxygen to the body and utilize it effectively during physical activity. The correct answer identifies the heart and blood vessels, which are integral components of the cardiovascular system, as well as the respiratory system, which is responsible for the exchange of gases, allowing oxygen to enter the bloodstream and carbon dioxide to be expelled. Furthermore, it highlights the tissue metabolic systems, which are crucial in determining how well the body can utilize the oxygen delivered to the muscles and other tissues for energy production. Each component plays a vital role: the heart pumps oxygenated blood throughout the body; the blood vessels facilitate the transport of blood to and from tissues; the respiratory system captures oxygen from the air; and the tissue metabolic systems, including cellular respiration processes, are where oxygen is converted into energy at the cellular level. This collective function is what defines cardiorespiratory fitness, making the chosen answer comprehensive and accurate in capturing the complexity of the systems involved in oxygen utilization.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://acsmhealthfitnesss.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE