

ACS Physical Chemistry: Thermochemistry Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What is the formula for Gibbs energy in thermodynamic terms?**
 - A. $G = U - TS$
 - B. $G = H + TS$
 - C. $G = H - TS$
 - D. $G = U + H$

- 2. What is the relationship between ΔG and the equilibrium constant K ?**
 - A. $\Delta G = RT \ln K$
 - B. $\Delta G = -RT \ln K$
 - C. $\Delta G = RT/K$
 - D. $\Delta G = K/RT$

- 3. What does a negative ΔG indicate about the direction of a chemical reaction?**
 - A. The reaction proceeds to the left
 - B. The reaction is at equilibrium
 - C. The reaction proceeds to the right
 - D. The reaction cannot occur

- 4. What is the electromotive force (emf) of a cell defined as?**
 - A. The maximum current produced
 - B. The cell potential when balanced by an opposing potential
 - C. The sum of all individual potentials
 - D. The voltage drop across the anode

- 5. Which condition describes an isochoric process?**
 - A. Constant pressure
 - B. Constant temperature
 - C. Constant volume
 - D. Constant internal energy

6. How is the standard Gibbs energy of reaction expressed mathematically?

- A. $\Delta_rG^\circ = \Delta_rH^\circ - T\Delta_rS^\circ$
- B. $\Delta_rG^\circ = \sum \text{Products } \nu G^\circ m - \sum \text{Reactants } \nu G^\circ m$
- C. $\Delta_rG^\circ = \sum \text{Reactants } \nu \Delta_fG^\circ - \sum \text{Products } \nu \Delta_fG^\circ$
- D. $\Delta_rG^\circ = TdS - pdV$

7. What does calorimetry study?

- A. Thermal conductivity in solids
- B. Heat transfers during physical and chemical processes
- C. Chemical reaction rates
- D. The behavior of gases

8. Which equation represents the heat capacity at constant volume (C_v) for a diatomic gas?

- A. $C_v = (5/2)R$
- B. $C_v = (3/2)R$
- C. $C_v = (7/2)R$
- D. $C_v = (9/2)R$

9. In the context of gases, what does a compressibility factor (Z) less than 1 indicate?

- A. Repulsive forces are stronger
- B. Attractive forces are dominant
- C. The gas is non-ideal
- D. The gas will condense to a liquid

10. What is the enthalpy of mixing for perfect gases?

- A. $\Delta_{\text{mix}}H = nRT$
- B. $\Delta_{\text{mix}}H = 0$
- C. $\Delta_{\text{mix}}H = nR$
- D. $\Delta_{\text{mix}}H = nRT(1 + x)$

Answers

SAMPLE

1. C
2. B
3. C
4. B
5. C
6. A
7. B
8. A
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. What is the formula for Gibbs energy in thermodynamic terms?

- A. $G = U - TS$
- B. $G = H + TS$
- C. $G = H - TS$**
- D. $G = U + H$

The formula for Gibbs energy, also known as Gibbs free energy, is indeed correctly identified as $G = H - TS$. This expression plays a crucial role in thermodynamics as it combines aspects of enthalpy (H), temperature (T), and entropy (S) to determine the spontaneity of a process at constant temperature and pressure. In this formula, H represents the enthalpy of the system, which accounts for the total heat content and pressure-volume work. The term TS represents the energy that cannot do work, specifically the contribution of entropy multiplied by temperature. By subtracting the TS term from H, we arrive at G, which helps predict whether a process will occur spontaneously. A negative change in Gibbs free energy ($\Delta G < 0$) indicates that a reaction occurs spontaneously; a positive change ($\Delta G > 0$) suggests that the reaction is non-spontaneous. This relationship is fundamental in physical chemistry as it balances the energy available for performing work (enthalpy) against the energy lost to disorder (entropy), thus providing insight into the conditions under which chemical reactions and phase changes are favorable or not.

2. What is the relationship between ΔG and the equilibrium constant K?

- A. $\Delta G = RT \ln K$
- B. $\Delta G = -RT \ln K$**
- C. $\Delta G = RT/K$
- D. $\Delta G = K/RT$

The relationship between the change in Gibbs free energy (ΔG) and the equilibrium constant (K) stems from fundamental thermodynamic principles. At equilibrium, the change in Gibbs free energy for a reaction is related to the equilibrium constant through the equation $\Delta G = -RT \ln K$. In this equation, R represents the universal gas constant, T is the absolute temperature in Kelvin, and K is the equilibrium constant for the reaction. This relationship indicates that a negative value of ΔG corresponds to a spontaneous reaction in the forward direction and a positive value indicates non-spontaneity. Specifically: - If K is greater than 1, it implies that the products of the reaction are favored at equilibrium, resulting in a negative ΔG , which suggests the reaction can occur spontaneously. - Conversely, if K is less than 1, the reactants are favored, and ΔG will be positive, indicating that the reaction is non-spontaneous under standard conditions. Understanding this relationship helps chemists predict whether a reaction will proceed spontaneously based on its equilibrium constant. In essence, this equation integrates both thermodynamics and kinetics to provide insights into chemical reactions and their favorability.

3. What does a negative ΔG indicate about the direction of a chemical reaction?

- A. The reaction proceeds to the left
- B. The reaction is at equilibrium
- C. The reaction proceeds to the right**
- D. The reaction cannot occur

A negative ΔG , or Gibbs free energy change, indicates that a reaction is spontaneous in the forward direction under the given conditions. This means that the reactants have sufficient energy to convert into products, and the process will tend to occur without needing additional energy input. In thermodynamic terms, a negative ΔG signifies that the products of the reaction have lower free energy compared to the reactants. As a result, the system will favor the formation of products, and the reaction generally proceeds to the right, leading to an increase in product concentration over time. This characteristic is essential in understanding how reactions can be driven toward product formation, and it is a fundamental concept in predicting reaction feasibility. In contrast, a positive ΔG would indicate that the reaction is non-spontaneous in the forward direction, which may lead to a reverse reaction or equilibrium taking over without significant product formation under the same conditions.

4. What is the electromotive force (emf) of a cell defined as?

- A. The maximum current produced
- B. The cell potential when balanced by an opposing potential**
- C. The sum of all individual potentials
- D. The voltage drop across the anode

The electromotive force (emf) of a cell is defined as the cell potential when balanced by an opposing potential. This definition emphasizes that emf represents the maximum potential difference that the cell can produce. It reflects the capability of the cell to perform work, driving the movement of electrons through an external circuit. In practice, when the cell is connected to a load or an external circuit, the emf indicates how much voltage is available to overcome any internal resistance and external loads. It is essentially the inherent tendency of the electrochemical reactions occurring in the cell to drive the flow of electrons, and it remains constant until the cell equilibrates with an opposing potential. Other choices might include elements relevant to electrochemical cells, but they do not accurately describe what emf represents. For example, the maximum current produced (first option) is dependent on the load and resistance in the circuit, not a direct measure of the cell's inherent power. The sum of all individual potentials (third option) could misrepresent the cell behavior since emf is specifically about the potential difference across the entire electrochemical system rather than individual contributions. The voltage drop across the anode (fourth option) only considers one half of the electrochemical reaction and does not provide a full picture of the

5. Which condition describes an isochoric process?

- A. Constant pressure
- B. Constant temperature
- C. Constant volume**
- D. Constant internal energy

An isochoric process is characterized by a constant volume. In this type of thermodynamic process, the system does not exchange any work with its surroundings in terms of volume change since the volume is held constant throughout the process. This means that as a substance undergoes heating or cooling in an isochoric process, any heat exchanged will result in a change in temperature or internal energy, but the physical volume of the system does not change. In this context, the distinction between different thermodynamic processes is crucial. Constant pressure refers to an isobaric process, while constant temperature indicates an isothermal process. Constant internal energy is more specific to certain conditions that may or may not apply to an isochoric process, as the internal energy of a system can change with temperature variations even if the volume remains constant. Therefore, the defining characteristic of an isochoric process is indeed that the volume does not change, making it the correct answer.

6. How is the standard Gibbs energy of reaction expressed mathematically?

- A. $\Delta_rG^\circ = \Delta_rH^\circ - T\Delta_rS^\circ$**
- B. $\Delta_rG^\circ = \Sigma \text{Products } \nu G^\circ m - \Sigma \text{Reactants } \nu G^\circ m$
- C. $\Delta_rG^\circ = \Sigma \text{Reactants } \nu \Delta fG^\circ - \Sigma \text{Products } \nu \Delta fG^\circ$
- D. $\Delta_rG^\circ = TdS - pdV$

The standard Gibbs energy of reaction is expressed mathematically as the difference between the standard enthalpy change and the temperature multiplied by the standard entropy change of the reaction. This relationship is derived from the fundamental definition of Gibbs free energy, which accounts for both the energy changes due to the heat transfer at constant temperature and the entropy changes associated with the disorder of the system. In this expression, Δ_rH° represents the standard enthalpy change of the reaction, which quantifies the heat absorbed or released under standard conditions. T is the absolute temperature in Kelvin, reflecting how temperature influences the system's entropy. Δ_rS° is the standard entropy change of the reaction, which indicates the change in disorder or randomness of the system during the reaction. This equation effectively captures the thermodynamic balance of energy and entropy, illustrating how they interact to determine the spontaneity of a reaction at a given temperature. A negative value of Gibbs energy indicates that the reaction is spontaneous, whereas a positive value suggests non-spontaneity. Understanding this equation is fundamental in thermochemistry, as it links the energy and entropy contributions to predict reaction behavior under standard conditions.

7. What does calorimetry study?

- A. Thermal conductivity in solids
- B. Heat transfers during physical and chemical processes**
- C. Chemical reaction rates
- D. The behavior of gases

Calorimetry is the branch of physics and chemistry that specifically focuses on measuring the heat transferred during physical and chemical processes. This includes understanding how energy is absorbed or released by substances during reactions or phase changes. In calorimetry, various techniques and instruments, called calorimeters, are used to precisely measure temperature changes that correlate with heat exchanges. Understanding heat transfer is crucial in both physical processes, like melting or boiling, and chemical reactions, like combustion or dissolution. By studying these processes, researchers can derive important thermodynamic properties, such as enthalpy changes, which provide insights into reaction mechanisms and the energy requirements of different processes. The other options pertain to different areas of study in thermodynamics and physical chemistry. For example, thermal conductivity relates to how heat travels through materials, chemical reaction rates deal with the speed of reactions rather than the energy changes involved, and the behavior of gases focuses on gas laws and properties. Thus, the focus of calorimetry distinctly lies in the realm of heat transfer, making it a fundamental tool in thermodynamics.

8. Which equation represents the heat capacity at constant volume (C_v) for a diatomic gas?

- A. $C_v = (5/2)R$**
- B. $C_v = (3/2)R$
- C. $C_v = (7/2)R$
- D. $C_v = (9/2)R$

The heat capacity at constant volume (C_v) for a diatomic gas is derived from the equipartition theorem, which states that energy is equally distributed among all degrees of freedom in a system. A diatomic molecule possesses translational and rotational degrees of freedom. For a diatomic gas, there are: 1. 3 translational degrees of freedom (movement in x, y, and z directions). 2. 2 rotational degrees of freedom (rotation about two axes; the third axis is not counted because it does not contribute significantly to energy at typical temperatures). At room temperature, diatomic gases can also exhibit vibrational modes, but these generally require higher energy to become significantly populated and are often ignored for simplicity in thermodynamic calculations at lower temperatures. Using the equipartition theorem, each degree of freedom contributes $\frac{1}{2}kT$ (where k is the Boltzmann constant and T is the temperature) to the internal energy. For a diatomic gas at room temperature, this results in: - Translational contributions: $3 \times \frac{1}{2}kT = \frac{3}{2}kT$ - Rotational contributions

9. In the context of gases, what does a compressibility factor (Z) less than 1 indicate?

- A. Repulsive forces are stronger**
- B. Attractive forces are dominant**
- C. The gas is non-ideal**
- D. The gas will condense to a liquid**

A compressibility factor (Z) less than 1 indicates that the attractive interactions among gas particles are stronger than the repulsive interactions. In the ideal gas model, gases have Z equal to 1, indicating that real gases behave ideally. However, when Z is less than 1, it suggests that the gas particles are experiencing significant attractive forces that draw them closer together, leading to reduced pressure compared to an ideal gas. In practical terms, this behavior is often observed at high pressures or low temperatures where intermolecular forces become significant. The attractive forces pull the particles closer, causing the gas to occupy less volume than predicted by the ideal gas law, hence resulting in a compressibility factor less than one. Understanding this concept is vital in predicting the behavior of gases under different conditions, and it plays an important role in various applications, including gas storage and transport, as well as in processes like liquefaction.

10. What is the enthalpy of mixing for perfect gases?

- A. $\Delta_{\text{mix}}H = nRT$**
- B. $\Delta_{\text{mix}}H = 0$**
- C. $\Delta_{\text{mix}}H = nR$**
- D. $\Delta_{\text{mix}}H = nRT(1 + x)$**

The enthalpy of mixing for perfect gases is zero, which is reflected in the correct answer. This outcome arises from the fundamental characteristics of ideal gases. When two ideal gases are mixed, there are no interactions or forces between the gas molecules as they behave independently. Therefore, the process of mixing does not require or release any heat energy. The absence of intermolecular forces means that the enthalpy, which accounts for internal energy and pressure-volume work, does not change upon mixing. In thermodynamic terms, the specific enthalpy remains constant when the gases are mixed, leading to a net enthalpy change of zero. This is an essential concept when studying gas behavior under ideal conditions, reinforcing the behavior of perfect gases as independent entities that do not influence each other energetically. Other options suggest various enthalpic changes, such as a positive or different value, which do not apply in the context of ideal gas mixing. The foundational principle lies in the independence of gas behavior, resulting in no enthalpic change during mixing.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://acsphysicalchemthermochem.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE