

ACS Physical Chemistry: Thermochemistry Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. How can the entropy of a substance be derived according to standard procedures?**
 - A. From the area under a graph of T vs. C_p**
 - B. From the area under a graph of C_p/T against T**
 - C. From heat capacity at constant pressure**
 - D. Through experimental calorimetry directly**
- 2. The transfer of energy caused by a temperature difference is called?**
 - A. Work**
 - B. Heat**
 - C. Pressure**
 - D. Volume**
- 3. What is the outcome when ΔH is negative and ΔS is positive?**
 - A. The reaction is nonspontaneous**
 - B. The reaction is spontaneous at all temperatures**
 - C. The reaction is spontaneous only at high temperatures**
 - D. The reaction is spontaneous only at low temperatures**
- 4. What is the relationship between the equilibrium constant and standard emf for a cell reaction?**
 - A. $\ln K = \nu FE^\circ /RT$**
 - B. $\ln K = RT/\nu FE^\circ$**
 - C. $\ln K = E^\circ/\nu F$**
 - D. $\ln K = \Delta G^\circ/\nu F$**
- 5. In thermochemistry, what happens when a system exhibits an exothermic reaction?**
 - A. The system absorbs heat from the environment**
 - B. The system releases heat to the environment**
 - C. The temperature of the system decreases**
 - D. The reaction occurs at a constant temperature**

- 6. What is a path function in the context of thermodynamics?**
- A. A property that is independent of the state of the system**
 - B. A property that solely depends on the endpoint of a process**
 - C. A property that depends on the specific path taken to reach a state**
 - D. A property that is constant for all processes**
- 7. Which formula represents the vapor pressure of an ideal solution?**
- A. $p = p^*_A + x_B(p^*_B - p^*_A)$**
 - B. $p = p^*_A + (p^*_B - p^*_A)x_A$**
 - C. $p = p^*_B + (p^*_A - p^*_B)x_A$**
 - D. $p = p^*_B + x_A(p^*_A - p^*_B)$**
- 8. What type of system allows the transfer of matter through its boundaries?**
- A. An isolated system**
 - B. A closed system**
 - C. An open system**
 - D. A thermally conductive system**
- 9. In terms of thermodynamic equilibrium, what does it imply about ΔG ?**
- A. ΔG is less than 0**
 - B. ΔG is greater than 0**
 - C. ΔG is equal to 0**
 - D. ΔG can be any value**
- 10. If a reaction has more microstates, what can be inferred about its entropy?**
- A. It has low entropy**
 - B. It has high entropy**
 - C. Entropy does not change**
 - D. It has no relation to entropy**

Answers

SAMPLE

1. B
2. B
3. B
4. A
5. B
6. C
7. C
8. C
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. How can the entropy of a substance be derived according to standard procedures?

- A. From the area under a graph of T vs. C_p
- B. From the area under a graph of C_p/T against T**
- C. From heat capacity at constant pressure
- D. Through experimental calorimetry directly

Calculating the entropy change of a substance from standard procedures typically involves relating it to temperature and heat capacity. The correct choice reflects a well-established thermodynamic relationship: the entropy (S) of a substance can be determined from the area under a graph of $(\frac{C_p}{T})$ against temperature (T). This method arises from the fundamental definition of entropy in thermodynamics, where the change in entropy can be calculated using the integral: $\Delta S = \int \frac{C_p}{T} dT$. In this expression, (C_p) represents the heat capacity at constant pressure, and (T) is the absolute temperature. The integral effectively sums the incremental contributions to entropy as the temperature changes. Therefore, plotting $(\frac{C_p}{T})$ against T allows for the visual determination of the total area under the curve, which corresponds to the change in entropy over the relevant temperature range. The other choices, while related to entropy and heat capacity, do not directly utilize the entropy relationship derived from integrating $(\frac{C_p}{T})$. The area under the graph of T vs. (C_p) does not yield entropy directly; while heat

2. The transfer of energy caused by a temperature difference is called?

- A. Work
- B. Heat**
- C. Pressure
- D. Volume

The transfer of energy that occurs due to a temperature difference is referred to as heat. This process is fundamental in thermodynamics and is characterized by the flow of thermal energy from a region of higher temperature to a region of lower temperature. Heat transfer can occur through conduction, convection, or radiation, depending on the circumstances and the materials involved. This definition and understanding of heat set it apart from other concepts in thermodynamics. For example, work refers to energy transfer that results from a force acting through a distance, which does not necessarily rely on a temperature difference. Pressure is a measure of force per unit area and does not directly relate to energy transfer in the context of temperature variations. Volume pertains to the amount of space occupied by a substance and does not encompass energy transfer phenomena. Thus, the correct identification of heat as the energy transfer mechanism linked to temperature differences is a crucial aspect of thermodynamics and plays a significant role in understanding thermal processes.

3. What is the outcome when ΔH is negative and ΔS is positive?

- A. The reaction is nonspontaneous**
- B. The reaction is spontaneous at all temperatures**
- C. The reaction is spontaneous only at high temperatures**
- D. The reaction is spontaneous only at low temperatures**

When the change in enthalpy (ΔH) is negative, it indicates that the reaction is exothermic; heat is released during the process. When the change in entropy (ΔS) is positive, it suggests that the disorder of the system increases, meaning the products of the reaction have more energy states available than the reactants. In thermodynamics, the spontaneity of a reaction at a given temperature is determined by the Gibbs free energy change (ΔG), which is given by the equation: $\Delta G = \Delta H - T\Delta S$. For a reaction to be spontaneous, ΔG must be negative. When ΔH is negative and ΔS is positive, the first term in the equation (ΔH) is a negative value and the second term ($T\Delta S$) is positive, since T (temperature) is always positive. This means that as the temperature increases, the negative impact of the positive ΔS term becomes more significant, but because ΔH is negative from the outset, this makes ΔG negative at all temperatures. Therefore, with both conditions satisfied—negative ΔH and positive ΔS —the reaction is spontaneous across all temperatures. This leads to the conclusion that the reaction can occur spontaneously at any temperature, making the

4. What is the relationship between the equilibrium constant and standard emf for a cell reaction?

- A. $\ln K = \nu FE^\circ / RT$**
- B. $\ln K = RT/\nu FE^\circ$**
- C. $\ln K = E^\circ/\nu F$**
- D. $\ln K = \Delta G^\circ/\nu F$**

The relationship between the equilibrium constant (K) and the standard electromotive force (emf, denoted as E°) of a cell reaction is governed by thermodynamic principles. The appropriate equation connects these quantities through the Gibbs free energy change (ΔG°) for the reaction at equilibrium. The equation states that the equilibrium constant can be expressed as: $[\Delta G^\circ = -nFE^\circ]$ where: $-\Delta G^\circ$ is the standard Gibbs free energy change, $-n$ is the number of moles of electrons transferred in the cell reaction, $-F$ is Faraday's constant (the charge of one mole of electrons), $-E^\circ$ is the standard cell potential. At equilibrium, the Gibbs free energy change is also related to the equilibrium constant by the equation: $[\Delta G^\circ = -RT \ln K]$ where: $-R$ is the universal gas constant, $-T$ is the temperature in Kelvin. By substituting the first equation into the second equation, we can express the relationship between K and E° : $[-nFE^\circ = -RT \ln K]$. Rearranging this gives: $[\ln K = \frac{nFE^\circ}{RT}]$. Here, ν (the

5. In thermochemistry, what happens when a system exhibits an exothermic reaction?

- A. The system absorbs heat from the environment**
- B. The system releases heat to the environment**
- C. The temperature of the system decreases**
- D. The reaction occurs at a constant temperature**

When a system undergoes an exothermic reaction, it releases heat to the environment. This process involves the transformation of reactants into products, during which energy is released in the form of heat. As a result, the total internal energy of the system decreases, and heat flows out of the system, causing the surroundings to gain energy and, often, experience a temperature rise. This release of heat is a defining characteristic of exothermic reactions, and it distinguishes them from endothermic reactions, where a system absorbs heat from the environment. In an exothermic reaction, because the system is losing heat, the temperature of the system may decrease, but this is a consequence of the heat flow rather than a defining feature of the reaction itself. Constant temperature can also occur under specific conditions, such as during phase changes, but it is not a general characteristic of exothermic reactions. Thus, the key takeaway is that an exothermic reaction is characterized primarily by the release of heat to the surroundings, which aligns with the correct answer.

6. What is a path function in the context of thermodynamics?

- A. A property that is independent of the state of the system**
- B. A property that solely depends on the endpoint of a process**
- C. A property that depends on the specific path taken to reach a state**
- D. A property that is constant for all processes**

In thermodynamics, a path function is defined as a property that depends on the specific path taken to reach a particular state within a system. This means that the value of a path function can vary depending on the route taken during a thermodynamic process. For instance, consider work and heat: the amount of work done on or by a system, or the amount of heat exchanged, can differ significantly based on how the system is manipulated during its transition from one state to another. If a system is taken from state A to state B by different processes (say, isothermal versus adiabatic), the heat transferred and work done can be different for each path. This is contrasted with state functions, which depend only on the initial and final states of the system, regardless of the path taken to get there. Examples of state functions include internal energy, enthalpy, and entropy, which are determined solely by the properties of the system at those end states. Understanding this distinction is crucial in thermodynamics, particularly in applications involving energy transfer, where one must recognize whether to use path functions or state functions for various calculations and predictions for physical systems.

7. Which formula represents the vapor pressure of an ideal solution?

- A. $p = p^*_A + x_B(p^*_B - p^*_A)$
- B. $p = p^*_A + (p^*_B - p^*_A)x_A$
- C. $p = p^*_B + (p^*_A - p^*_B)x_A$**
- D. $p = p^*_B + x_A(p^*_A - p^*_B)$

The formula for the vapor pressure of an ideal solution reflects how the partial vapor pressures of the components contribute to the total vapor pressure. In this question, the correct choice mathematically describes the relationship between the total vapor pressure and the mole fractions of the components in an ideal solution. For an ideal solution, Raoult's law states that the partial vapor pressure of each component is proportional to its mole fraction in the liquid phase. The formula correctly indicates that the total vapor pressure (p) can be expressed as the sum of the partial pressures of the components, which depends on their respective mole fractions and their pure component vapor pressures. In this case, the formulation $p = p^*_B + (p^*_A - p^*_B)x_A$ signifies that the total pressure is derived from the pure vapor pressure of component B, adjusted by the difference in vapor pressures between components A and B when multiplied by the mole fraction of A (x_A). This reflects the change in the overall vapor pressure as the composition of the solution changes—focusing on how the presence of one component alters the vapor pressure due to interactions between the solution's components. Other options do not represent the correct relationships as per Raoult's law for ideal solutions. They suggest varying combinations of

8. What type of system allows the transfer of matter through its boundaries?

- A. An isolated system
- B. A closed system
- C. An open system**
- D. A thermally conductive system

An open system is defined as one that can exchange both energy and matter with its surroundings. In the context of thermodynamics, this means that substances can enter or leave the system, in addition to energy transfer through heat or work. This characteristic makes open systems particularly relevant in various real-world applications, such as biological processes and chemical reactions occurring in open vessels. In contrast, an isolated system does not exchange either energy or matter with its surroundings, while a closed system allows for energy exchange but restricts matter transfer. A thermally conductive system describes how well a system can transfer heat but does not inherently address the exchange of matter. Thus, the defining feature of an open system is that it facilitates the transfer of both matter and energy, making it the correct answer.

9. In terms of thermodynamic equilibrium, what does it imply about ΔG ?

- A. ΔG is less than 0**
- B. ΔG is greater than 0**
- C. ΔG is equal to 0**
- D. ΔG can be any value**

In the context of thermodynamic equilibrium, the Gibbs free energy change (ΔG) plays a crucial role in understanding the state of a system. At equilibrium, the system has reached a state where the forward and reverse reactions occur at equal rates, and there is no net change in the concentrations of the reactants and products involved in the reaction. When a system is at equilibrium, the Gibbs free energy change (ΔG) is equal to zero. This indicates that there is no driving force for the reaction to proceed in either the forward or reverse direction; the reaction is balanced. If ΔG were negative, it would imply that the reaction can proceed spontaneously in the forward direction, thus moving away from equilibrium. Conversely, if ΔG were positive, it would mean the reaction would not occur spontaneously in the forward direction, signaling that the system is likely moving toward equilibrium but is not yet there. So, the equality of ΔG to zero at equilibrium is a hallmark of this state, reflecting that the system is stable with no tendency to change. Understanding this concept is fundamental in thermodynamics, as it signifies the condition under which a reaction mixture does not favor either reactants or products.

10. If a reaction has more microstates, what can be inferred about its entropy?

- A. It has low entropy**
- B. It has high entropy**
- C. Entropy does not change**
- D. It has no relation to entropy**

The concept of microstates is foundational in statistical thermodynamics and is directly linked to the definition of entropy. Entropy is a measure of the number of ways a system can be arranged while still producing the same macroscopic state. Specifically, it quantifies the level of disorder or randomness in a system. When a reaction has more microstates, it suggests that there are many configurations or arrangements that the system can adopt. This increased number of possible arrangements corresponds to higher disorder. Since entropy is a measure of this disorder, it naturally follows that a system with a greater number of microstates will exhibit higher entropy. For example, consider a scenario in which reactants can form a wide variety of products due to different spatial arrangements or bonding configurations. The ability of the system to achieve these varied conditions means that there is considerable disorder, thus an increase in entropy. This relationship underscores the second law of thermodynamics, which states that the entropy of an isolated system tends to increase over time, promoting states with greater microstates. Therefore, when we say that a reaction has more microstates, it indicates that the system is more disordered and thus has high entropy.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://acsphysicalchemthermochem.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE