

ACLS Resuscitation Quality Improvement (RQI) Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

1. What should be done to reassess a patient's eligibility for fibrinolytic therapy?

- A. Repeat the neuro exam**
- B. Order chest X-ray**
- C. Initiate a blood transfusion**
- D. Consult an internist**

2. What is the importance of early defibrillation in ACLS?

- A. It is less critical than administering medications**
- B. It can stabilize patients until further treatment is available**
- C. It is essential for treating shockable rhythms like VF and pVT**
- D. It should only be done as a last resort**

3. Patients with respiratory failure commonly experience a rise in what level in arterial blood?

- A. Oxygen**
- B. Carbon dioxide**
- C. Hemoglobin**
- D. Cholesterol**

4. What is a physiologic effect of nitroglycerin?

- A. Increases heart rate**
- B. Reduces preload**
- C. Increases myocardial oxygen demand**
- D. Decreases coronary perfusion**

5. Which of the following is a common sign of stroke?

- A. Difficulty in walking**
- B. Severe headache**
- C. Trouble speaking**
- D. Feeling unusually tired**

6. What drug is typically given for cardiac arrest with asystole or PEA?

- A. Adenosine**
- B. Atropine**
- C. Epinephrine**
- D. Amiodarone**

7. What is the recommended depth of chest compressions in adults during CPR?

- A. At least 1 inch (2.5 cm)**
- B. At least 2 inches (5 cm)**
- C. At least 3 inches (7.5 cm)**
- D. At least 1.5 inches (3.8 cm)**

8. During rescue breathing for an adult, what is the appropriate volume of air to deliver?

- A. Small puff of air**
- B. Moderate-sized breath**
- C. Large volume breath**
- D. Any volume that feels comfortable**

9. What is the significance of early defibrillation in cardiac arrest cases?

- A. It prevents all rhythm changes**
- B. It reduces the need for CPR**
- C. It significantly improves survival rates**
- D. It is only effective in children**

10. In the context of bradycardia, what does symptomatic refer to?

- A. Presence of mild symptoms only**
- B. Presence of severe symptoms causing instability**
- C. Absence of any symptoms**
- D. Only physical signs without patient awareness**

Answers

SAMPLE

1. A
2. C
3. B
4. B
5. C
6. C
7. B
8. B
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. What should be done to reassess a patient's eligibility for fibrinolytic therapy?

- A. Repeat the neuro exam**
- B. Order chest X-ray**
- C. Initiate a blood transfusion**
- D. Consult an internist**

Reassessing a patient's eligibility for fibrinolytic therapy primarily involves evaluating their neurological status. A repeat neurological examination can help identify any changes that may affect the appropriateness of administering fibrinolytics, particularly in cases of stroke. For example, it helps to determine the presence or absence of contraindications such as a worsening clinical picture indicating a more severe hemorrhage or other neurological issues that may arise after initial presentation. In contrast, ordering a chest X-ray would not directly provide relevant information about the patient's current neurological status and, therefore, is not a key part of reassessing eligibility for fibrinolytics. Similarly, initiating a blood transfusion is unrelated to determining whether a patient should receive fibrinolysis; it addresses other aspects of patient care. Consulting an internist might be appropriate for overall medical management but does not specifically assess the neurological condition that impacts fibrinolytic therapy decisions.

2. What is the importance of early defibrillation in ACLS?

- A. It is less critical than administering medications**
- B. It can stabilize patients until further treatment is available**
- C. It is essential for treating shockable rhythms like VF and pVT**
- D. It should only be done as a last resort**

Early defibrillation is crucial in Advanced Cardiovascular Life Support (ACLS) as it is specifically designed to treat certain types of cardiac arrest that involve shockable rhythms, such as ventricular fibrillation (VF) and pulseless ventricular tachycardia (pVT). These rhythms are life-threatening and result in ineffective blood circulation. The use of a defibrillator applies an electrical shock that can restore a normal heart rhythm, significantly increasing the chances of survival when administered promptly. The effectiveness of defibrillation diminishes rapidly over time; thus, the sooner it is delivered after a patient experiences sudden cardiac arrest, the greater the likelihood of a favorable outcome. This urgency makes early defibrillation a cornerstone of resuscitation efforts in ACLS protocols, underscoring its role in stabilizing patients who are in these specific shockable rhythms. Timely action is pivotal, and the strong emphasis on early defibrillation reflects a clear understanding of its life-saving impact in emergency scenarios.

3. Patients with respiratory failure commonly experience a rise in what level in arterial blood?

- A. Oxygen**
- B. Carbon dioxide**
- C. Hemoglobin**
- D. Cholesterol**

In cases of respiratory failure, patients typically have a compromised ability to either take in oxygen or eliminate carbon dioxide effectively. This leads to a retention of carbon dioxide in the bloodstream, causing its levels to rise. Elevated carbon dioxide levels, known as hypercapnia, occur when the respiratory system cannot remove carbon dioxide efficiently, which can result in respiratory acidosis and various physiological effects. In contrast, the other options are not relevant to the conditions typically associated with respiratory failure. For instance, oxygen levels would often be low in respiratory failure rather than high. Hemoglobin levels can vary but are not directly affected in the same way by respiratory failure. Cholesterol levels are unrelated to the immediate effects of respiratory failure. Thus, the rise in carbon dioxide is a hallmark of respiratory failure, highlighting the importance of monitoring arterial blood gases in affected patients.

4. What is a physiologic effect of nitroglycerin?

- A. Increases heart rate**
- B. Reduces preload**
- C. Increases myocardial oxygen demand**
- D. Decreases coronary perfusion**

The physiologic effect of nitroglycerin primarily involves its role as a vasodilator, which leads to a reduction in preload—the volume of blood returning to the heart before it contracts. By dilating the veins, nitroglycerin decreases the amount of blood that fills the heart during diastole. This reduction in preload is particularly beneficial in conditions such as heart failure and angina, as it decreases the workload on the heart and helps to alleviate ischemic pain by reducing the oxygen demand of the myocardium. In addition to lowering preload, nitroglycerin can also lead to a reduction in myocardial wall stress, which can further help in managing chest pain and improving overall heart function. Understanding this effect is crucial in the context of treating acute coronary syndromes, where managing the balance between oxygen supply and demand is a key factor in patient care.

5. Which of the following is a common sign of stroke?

- A. Difficulty in walking**
- B. Severe headache**
- C. Trouble speaking**
- D. Feeling unusually tired**

Trouble speaking is a common and significant sign of a stroke, often referred to as aphasia or dysarthria, depending on the nature of the speech impairment. This can manifest as difficulty articulating words, slurred speech, or being unable to understand language. Speech difficulties arise when the areas of the brain responsible for language production or comprehension are affected by a lack of blood flow, which is the result of an obstruction or bleeding in brain tissues. Recognizing trouble speaking is crucial for immediate medical intervention, as timely treatment can significantly improve outcomes for patients experiencing a stroke. While other signs such as difficulty in walking, severe headache, and feeling unusually tired can be associated with stroke, they may also relate to numerous other conditions or factors. Trouble speaking is distinctly linked to the neurological impact of a stroke, making it a key indicator for emergency response.

6. What drug is typically given for cardiac arrest with asystole or PEA?

- A. Adenosine**
- B. Atropine**
- C. Epinephrine**
- D. Amiodarone**

The drug that is typically given for cardiac arrest with asystole or pulseless electrical activity (PEA) is epinephrine. In these critical situations, epinephrine is used because it plays a vital role in enhancing coronary and cerebral perfusion pressure during cardiopulmonary resuscitation (CPR). This is crucial for improving the chances of restoring a viable heart rhythm and achieving a successful resuscitation outcome. Epinephrine acts as a potent vasoconstrictor, which helps to increase blood flow to the heart and brain, even during the unresponsive states of asystole or PEA. Administering this medication aligns with the Advanced Cardiovascular Life Support (ACLS) guidelines, which emphasize its importance in the management of cardiac arrest. In contrast, although adenosine, atropine, and amiodarone are important medications in other contexts of cardiac issues, they are not indicated for use in cases of asystole or PEA. Adenosine is typically utilized for tachyarrhythmias, atropine is used for symptomatic bradycardia, and amiodarone is recommended for shock-refractory ventricular fibrillation or pulseless ventricular tachycardia. Therefore, ep

7. What is the recommended depth of chest compressions in adults during CPR?

- A. At least 1 inch (2.5 cm)**
- B. At least 2 inches (5 cm)**
- C. At least 3 inches (7.5 cm)**
- D. At least 1.5 inches (3.8 cm)**

The recommended depth of chest compressions in adults during CPR is at least 2 inches (5 cm). This depth is crucial as it allows for effective circulation and ensures that blood reaches vital organs, particularly the heart and brain. Proper depth helps generate adequate pressure within the chest cavity, which is necessary for blood to flow during compressions. Compressions that are too shallow can lead to ineffective circulation, reducing the chances of successful resuscitation. The emphasis on achieving a minimum depth of 2 inches also aligns with guidelines set by the American Heart Association, which prioritize evidence-based practices in resuscitation to optimize patient outcomes. Ensuring the compressions are at this recommended depth is a foundational element of high-quality CPR, ultimately impacting survival rates in cardiac arrest scenarios.

8. During rescue breathing for an adult, what is the appropriate volume of air to deliver?

- A. Small puff of air**
- B. Moderate-sized breath**
- C. Large volume breath**
- D. Any volume that feels comfortable**

The appropriate volume of air to deliver during rescue breathing for an adult is a moderate-sized breath. This is crucial because giving a breath that is too small may not provide sufficient oxygen to the lungs, while delivering a breath that is too large can cause gastric inflation and increase the risk of aspiration. In adult patients, the goal is to deliver about 500 to 600 milliliters of air with each breath, which is in the range of a moderate-sized breath. This amount ensures that oxygen reaches the alveoli efficiently without causing overdistension of the lungs. Rescue breathing should be performed at a rate of about 10 to 12 breaths per minute, allowing adequate time for the exhalation of each breath. Proper technique and volume are essential for effective resuscitation and to improve the patient's chances of survival during a cardiac arrest scenario.

9. What is the significance of early defibrillation in cardiac arrest cases?

- A. It prevents all rhythm changes**
- B. It reduces the need for CPR**
- C. It significantly improves survival rates**
- D. It is only effective in children**

Early defibrillation plays a crucial role in the management of cardiac arrest, particularly in cases of ventricular fibrillation and pulseless ventricular tachycardia. These are life-threatening arrhythmias where the heart is unable to effectively pump blood, leading to a lack of oxygen in vital organs. The administration of defibrillation delivers an electrical shock to the heart, which can help restore a normal rhythm. The significance of early defibrillation lies in its ability to substantially improve survival rates. Statistics indicate that the chances of survival decrease significantly for each minute that passes without defibrillation following the onset of ventricular fibrillation. When performed within the first few minutes of cardiac arrest, defibrillation can increase the likelihood of successful resuscitation, along with better outcomes for neurological function. This approach's effectiveness has been well-established in research and clinical practice, reinforcing its importance in emergency care protocols. Understanding this reinforces the vital role that early defibrillation plays in emergency response to cardiac arrest cases.

10. In the context of bradycardia, what does symptomatic refer to?

- A. Presence of mild symptoms only**
- B. Presence of severe symptoms causing instability**
- C. Absence of any symptoms**
- D. Only physical signs without patient awareness**

Symptomatic bradycardia refers to a clinical situation where a patient's slow heart rate is associated with significant symptoms that indicate hemodynamic instability. This often means that the bradycardia is leading to critical conditions such as hypotension, chest pain, altered mental status, or signs of impaired perfusion. The presence of severe symptoms, therefore, warrants immediate medical intervention, as it suggests that the patient may not be adequately perfusing their vital organs. Severe symptoms caused by bradycardia indicate that the body is not receiving enough oxygen-rich blood, resulting in potential complications. In contrast, mild symptoms might not reflect a significant problem, or the absence of symptoms indicates that the body is coping adequately with the slow heart rate. Physical signs without patient awareness do not qualify the patient as symptomatic since symptoms must be both noticeable and impactful to the overall stability of the patient.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://aclsrqi.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE