

ABCTE Biology Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. How many individual chromosomes (not pairs) does each cell in an individual with Down syndrome have?**
 - A. A 23**
 - B. B 24**
 - C. C 46**
 - D. D 47**
- 2. What is the significance of the 5' to 3' directionality in DNA replication?**
 - A. It dictates the way DNA is wound.**
 - B. It determines the fastest replication process.**
 - C. DNA strands can only elongate in this direction.**
 - D. It allows for simultaneous polymerase activity.**
- 3. What structural process occurs in plant cells to form the cell plate during cytokinesis?**
 - A. Vesicles merging**
 - B. Cell membrane pinching**
 - C. Cell wall formation**
 - D. Nuclear fission**
- 4. In the context of stellar evolution, what typically occurs to high-mass stars at the end of their lifespan?**
 - A. They become white dwarfs.**
 - B. They explode as supernovae.**
 - C. They shrink into neutron stars.**
 - D. They turn into red giants.**
- 5. Where does gene transcription occur in a cell?**
 - A. Mitochondria**
 - B. Cytoplasm**
 - C. Ribosome**
 - D. Nucleus**

6. What is the primary life stage during which both divisions of slime molds reproduce?

- A. The production of the pheromone cAMP**
- B. The presence of many nuclei in the cytoplasm**
- C. A life stage during which they produce spores**
- D. A life stage during which they are multicellular**

7. What effect does the Doppler Shift have on starlight from a star moving away from Earth?

- A. Increases in frequency**
- B. Decreases in wavelength**
- C. Increases in wavelength**
- D. Decreases in amplitude**

8. Which gland is primarily involved in the production of hormones related to the immune system?

- A. Adrenal gland**
- B. Pituitary gland**
- C. Thymus gland**
- D. Hypothalamus**

9. How many genes are estimated to be present in a human cell?

- A. 250**
- B. 2,500**
- C. 25,000**
- D. 250,000**

10. Which of the following is one nonspecific defense against invaders to the body?

- A. White blood cells**
- B. Vaccine**
- C. Antibodies**
- D. Mucous membranes**

Answers

SAMPLE

1. D
2. C
3. A
4. B
5. D
6. C
7. C
8. C
9. C
10. D

SAMPLE

Explanations

SAMPLE

1. How many individual chromosomes (not pairs) does each cell in an individual with Down syndrome have?

- A. A 23**
- B. B 24**
- C. C 46**
- D. D 47**

An individual with Down syndrome typically has 47 chromosomes in total. This genetic condition usually arises from the presence of an extra copy of chromosome 21, a phenomenon known as trisomy 21. In normal human cells, there are 46 chromosomes, organized into 23 pairs. However, in the case of Down syndrome, the extra chromosome results in a total count of 47 individual chromosomes. Thus, when considering the individual chromosomes, not pairs, each cell in an individual with Down syndrome contains that extra chromosome, leading to the total of 47. This understanding is crucial for recognizing how chromosomal abnormalities can lead to specific genetic conditions and their associated characteristics.

2. What is the significance of the 5' to 3' directionality in DNA replication?

- A. It dictates the way DNA is wound.**
- B. It determines the fastest replication process.**
- C. DNA strands can only elongate in this direction.**
- D. It allows for simultaneous polymerase activity.**

The significance of the 5' to 3' directionality in DNA replication is that DNA strands can only elongate in this direction. During replication, DNA polymerases, the enzymes responsible for synthesizing new DNA strands, add nucleotides to the growing chain specifically at the 3' end. This means that any newly synthesized strand is always built from the 5' to 3' direction, reflecting the natural orientation of DNA. This directionality is essential because it establishes how the template strands are copied. The two strands of the DNA double helix run antiparallel to one another, meaning one runs from 5' to 3' while the other runs from 3' to 5', leading to the necessity of different replication strategies for each strand. Understanding this concept is crucial for grasping the fundamental mechanics of DNA replication and the larger processes of cell division and genetic inheritance.

3. What structural process occurs in plant cells to form the cell plate during cytokinesis?

- A. Vesicles merging**
- B. Cell membrane pinching**
- C. Cell wall formation**
- D. Nuclear fission**

During cytokinesis in plant cells, the formation of the cell plate is a crucial process that involves the merging of vesicles. This occurs after the cell's mitotic phase when the cytoplasm divides to form two distinct daughter cells. In contrast to animal cells, where the cell membrane pinches inwards to create two separate cells, plant cells construct a new structure called the cell plate. The vesicles, which originate from the Golgi apparatus, transport cell wall materials such as pectin and other polysaccharides to the center of the dividing cell. When these vesicles coalesce, they form the cell plate. This cell plate starts developing in the middle of the cell and progressively expands outward until it fuses with the existing cell membrane, ultimately contributing to the formation of a new cell wall between the two daughter cells. This process is essential in maintaining the structural integrity and functionality of plant cells, as they require a rigid cell wall for support and protection. The other processes listed in the options do not accurately describe what happens during cytokinesis in plant cells. For example, while cell wall formation is a result of this process, it does not directly describe how the cell plate is formed. Similarly, the pinching of the cell membrane is characteristic of animal

4. In the context of stellar evolution, what typically occurs to high-mass stars at the end of their lifespan?

- A. A They become white dwarfs.**
- B. B They explode as supernovae.**
- C. C They shrink into neutron stars.**
- D. D They turn into red giants.**

High-mass stars, typically those with a mass greater than approximately eight times that of the Sun, undergo a dramatic end to their lifecycle. After exhausting their nuclear fuel, these stars cannot support themselves against gravitational collapse. The core of a high-mass star collapses under its own gravity, leading to extreme temperatures and pressures. As a result, the outer layers of the star are expelled violently, resulting in a supernova explosion. This catastrophic event not only disperses elements into space, enriching the interstellar medium but also can leave behind a remnant core. Depending on the mass of the core left after the supernova, this remnant may become a neutron star or, if massive enough, even collapse further into a black hole. In contrast, other scenarios like becoming white dwarfs, shrinking into neutron stars, or turning into red giants are typical of lower-mass stars or represent different stages of stellar evolution that do not apply to high-mass stars at the end of their lifespan. This highlights the distinct evolutionary paths based on a star's initial mass.

5. Where does gene transcription occur in a cell?

- A. Mitochondria
- B. Cytoplasm
- C. Ribosome
- D. Nucleus**

Gene transcription occurs in the nucleus of a cell because this is the location where DNA is housed and protected. During transcription, a segment of the DNA is converted into messenger RNA (mRNA) through the action of RNA polymerase and other associated proteins. This process involves unwinding the DNA double helix and synthesizing a complementary RNA strand. The resulting mRNA molecule then undergoes processing before it can be transported out of the nucleus into the cytoplasm, where it subsequently serves as a template for protein synthesis during translation. The nucleus acts as a critical regulatory hub for gene expression, ensuring that transcription is carefully controlled and coordinated within the cell. The other locations mentioned do not contain the necessary machinery for the process of transcription itself.

6. What is the primary life stage during which both divisions of slime molds reproduce?

- A. The production of the pheromone cAMP
- B. The presence of many nuclei in the cytoplasm
- C. A life stage during which they produce spores**
- D. A life stage during which they are multicellular

The primary life stage during which both divisions of slime molds reproduce is indeed associated with the production of spores. When slime molds enter this particular life stage, they are typically undergoing a process called sporulation, during which they form spores as a means of reproduction. Slime molds can exist in various forms, including solitary amoeboid cells during their feeding stage and a multicellular state when conditions are unfavorable, prompting them to reproduce. The spore stage allows for dissemination and survival in harsh environmental conditions, as the spores can remain dormant until favorable conditions return. This reproductive strategy is essential for ensuring the continuity of the slime mold's life cycle and maximizing its survival rate in fluctuating environments. The aspects of producing pheromones or the presence of multiple nuclei refer to different stages or processes but do not directly indicate the primary reproductive stage shared by both divisions of slime molds. The presence of many nuclei in the cytoplasm describes a cellular characteristic but does not define the stage associated with reproduction. Similarly, while being multicellular is part of their life cycle, it is specifically during spore production that the primary reproductive action occurs.

7. What effect does the Doppler Shift have on starlight from a star moving away from Earth?

- A. Increases in frequency**
- B. Decreases in wavelength**
- C. Increases in wavelength**
- D. Decreases in amplitude**

The Doppler Shift refers to the change in frequency or wavelength of light from a moving source relative to an observer. When a star is moving away from Earth, the light it emits experiences a shift toward longer wavelengths. This phenomenon is known as redshift. As the star moves away, the waves of light are stretched, leading to an increase in wavelength. Hence, light that may have originally been in the visible spectrum can shift toward the red end of the spectrum, occurring particularly with wavelengths that are longer than those we would detect if the star were stationary. This effect can tell astronomers not only about the movement of stars but also about the expansion of the universe. The greater the distance between the star and the observer, the more pronounced this redshift becomes, making it a key factor in studying celestial objects and their velocities. Thus, the reason the correct response highlights an increase in wavelength directly correlates with the physical principle underlying the Doppler Shift in the context of an object moving away from the observer.

8. Which gland is primarily involved in the production of hormones related to the immune system?

- A. Adrenal gland**
- B. Pituitary gland**
- C. Thymus gland**
- D. Hypothalamus**

The thymus gland plays a crucial role in the immune system, primarily by producing hormones that are essential for the development and maturation of T cells, which are a type of white blood cell vital for immune responses. Located in the upper chest, the thymus produces thymosin and thymopoietin, hormones that facilitate the differentiation of progenitor cells into T lymphocytes. These T cells are essential for adaptive immunity, aiding the body in defending against pathogens and recognizing self-cells to prevent autoimmune diseases. In contrast, the adrenal gland is chiefly associated with the production of stress hormones such as cortisol and adrenaline, the pituitary gland primarily regulates other endocrine glands and influences various bodily functions through various hormones, and the hypothalamus serves as a critical control center for many autonomic processes but does not focus on immune system hormones. Thus, the thymus gland is specifically oriented towards immune function, making it the correct choice in this context.

9. How many genes are estimated to be present in a human cell?

- A. 250**
- B. 2,500**
- C. 25,000**
- D. 250,000**

Human cells are estimated to contain approximately 20,000 to 25,000 genes. These genes are segments of DNA that contain the instructions for making proteins, which perform various functions in the body. The actual estimate varies somewhat due to ongoing research and the discovery of new gene functions and relationships, but the widely accepted range firmly places it around 25,000. This understanding is crucial for fields like genetics, medicine, and biotechnology, as it helps scientists comprehend human development, health, and disease at the molecular level. In contrast, the other options significantly underrepresent the number of genes found in human cells, indicating figures that are too low when compared to current genomic data.

10. Which of the following is one nonspecific defense against invaders to the body?

- A. White blood cells**
- B. Vaccine**
- C. Antibodies**
- D. Mucous membranes**

Mucous membranes serve as a key nonspecific defense mechanism in the body, providing a physical barrier against pathogens. These membranes line various cavities and organs, such as the respiratory and digestive tracts, and produce mucus, which traps dust, bacteria, and other foreign particles. This is an essential component of the innate immune system, which operates as a first line of defense, responding to any invader without the need for prior exposure or specific targeting. In contrast, the other options represent specific or more targeted responses to pathogens. White blood cells are components of both the nonspecific and specific immune systems, but they often require more specific responses to effectively deal with infections. Vaccines work by training the immune system to recognize and respond to specific pathogens, thus falling under the category of acquired immunity. Antibodies are produced by the immune system in response to specific antigens and are part of the adaptive immune response, targeting specific invaders rather than broadly defending against all.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://abctebiology.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE