

# ABC Orthotic & Prosthetic Practice Exam (Sample)

## Study Guide



**Everything you need from our exam experts!**

**This is a sample study guide. To access the full version with hundreds of questions,**

**Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.**

**ALL RIGHTS RESERVED.**

**No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.**

**Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.**

**SAMPLE**

# Table of Contents

|                                    |           |
|------------------------------------|-----------|
| <b>Copyright</b> .....             | <b>1</b>  |
| <b>Table of Contents</b> .....     | <b>2</b>  |
| <b>Introduction</b> .....          | <b>3</b>  |
| <b>How to Use This Guide</b> ..... | <b>4</b>  |
| <b>Questions</b> .....             | <b>6</b>  |
| <b>Answers</b> .....               | <b>9</b>  |
| <b>Explanations</b> .....          | <b>11</b> |
| <b>Next Steps</b> .....            | <b>17</b> |

SAMPLE

# Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

# How to Use This Guide

**This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:**

## 1. Start with a Diagnostic Review

**Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.**

## 2. Study in Short, Focused Sessions

**Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.**

## 3. Learn from the Explanations

**After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.**

## 4. Track Your Progress

**Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.**

## 5. Simulate the Real Exam

**Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.**

## 6. Repeat and Review

**Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.**

## 7. Use Other Tools

**Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.**

**There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!**

**SAMPLE**

## **Questions**

SAMPLE

- 1. True or False: Dry gangrene exhibits a poorly defined line of demarcation.**
  - A. True**
  - B. False**
  - C. Only in advanced stages**
  - D. Only in wet gangrene**
- 2. What are the two anterior channel deficits in a double action ankle joint?**
  - A. Crouching and knee instability**
  - B. Foot drop and hyperextension**
  - C. Hip flexion and foot drop**
  - D. Heel strike and toe off**
- 3. What are the correct joint positions when casting for a wrist-hand orthosis (WHO)?**
  - A. Wrist extended to 15 degrees, MCPs flexed 25-30 degrees**
  - B. Wrist extended to 20 degrees, MCPs flexed 35-40 degrees**
  - C. Wrist extended to 30 degrees, MCPs flexed 40-45 degrees**
  - D. Wrist extended to 25 degrees, MCPs flexed 30-35 degrees**
- 4. What forces act on the knee during single limb stance?**
  - A. Compressive forces from hip extensor muscles**
  - B. Valgus thrust on knee secondary to lateral shift**
  - C. Tensile forces from knee flexors**
  - D. Normal contact forces from the ground**
- 5. What are the two posterior channel deficits in a double action ankle joint?**
  - A. Foot drop and hyperextension**
  - B. Crouching and knee instability**
  - C. Plantarflexion and eversion**
  - D. Knee flexion and hip extension**

**6. What is the appropriate modification for a child with CP who has -5 degrees of dorsiflexion during casting for custom AFOs?**

- A. Cast in 0 degrees of dorsiflexion only**
- B. Cast in -5 degrees of dorsiflexion and plan to add an external heel wedge**
- C. Cast with an excessive heel lift only**
- D. Cast in 10 degrees of dorsiflexion**

**7. Which best describes the extension synergy pattern of the leg?**

- A. Hip flexion, adduction, internal rotation; knee flexion**
- B. Hip extension, adduction, internal rotation; knee extension**
- C. Knee flexion, external rotation; hip extension**
- D. Hip adduction, abduction; knee extension**

**8. During single limb stance, the foot goes through what range of degrees for plantarflexion and dorsiflexion?**

- A. 0 degrees PF to 15 degrees DF**
- B. 5 degrees PF to 10 degrees DF**
- C. 10 degrees PF to 5 degrees DF**
- D. 15 degrees PF to 5 degrees DF**

**9. How far should the HALO ring be positioned above the ears and eyebrows?**

- A. 2 cm**
- B. 1 cm**
- C. 3 cm**
- D. 0.5 cm**

**10. Which nerve impingement is associated with winging of the scapula?**

- A. Axillary nerve**
- B. Long thoracic nerve**
- C. Radial nerve**
- D. Thoracodorsal nerve**

## **Answers**

SAMPLE

1. B
2. A
3. B
4. B
5. A
6. B
7. B
8. B
9. B
10. B

SAMPLE

## **Explanations**

SAMPLE

**1. True or False: Dry gangrene exhibits a poorly defined line of demarcation.**

- A. True**
- B. False**
- C. Only in advanced stages**
- D. Only in wet gangrene**

Dry gangrene typically presents a clear and well-defined line of demarcation between healthy and necrotic tissue. This is a key characteristic that distinguishes it from other forms of gangrene, such as wet gangrene, which often lacks such clear boundaries due to the presence of infection and fluid. In dry gangrene, the tissue becomes dry, black, and shriveled, and this process usually occurs gradually, allowing for the development of this clear demarcation. Understanding this distinction is essential in the field of wound care and necessary for proper diagnosis and treatment. The presence of a well-defined line indicates that the necrosis is localized and that surrounding healthy tissue can often remain viable, which is critical for clinical decision-making regarding interventions like surgical amputation or wound management.

**2. What are the two anterior channel deficits in a double action ankle joint?**

- A. Crouching and knee instability**
- B. Foot drop and hyperextension**
- C. Hip flexion and foot drop**
- D. Heel strike and toe off**

In the context of a double action ankle joint, understanding the potential deficits in anterior channel movement is crucial. The correct answer highlights crouching and knee instability as the two deficits that can occur. Crouching generally refers to a posture that individuals may adopt to compensate for instability in the knee, leading to a more flexed position when standing or walking. This position may arise due to weakness or instability in the knee joint, which can happen when the anterior channels of the double action ankle joint do not provide adequate support or movement, especially during phases of gait. Knee instability is typically observed when there is inadequate support from surrounding structures, including the ankle joint. In a double action ankle joint, the lack of proper interaction between the ankle and knee can lead to difficulty in stabilizing the knee during activities such as walking, running, or descending stairs. As a result, without proper stabilization from the anterior channels, an individual may experience knee buckling or an inability to maintain an upright posture, resulting in crouching. The other options presented do not align appropriately with the deficits specific to the anterior channels of a double action ankle joint. For instance, while foot drop could be an issue influenced by other components of the ankle or neurological conditions, it does not

### 3. What are the correct joint positions when casting for a wrist-hand orthosis (WHO)?

- A. Wrist extended to 15 degrees, MCPs flexed 25-30 degrees
- B. Wrist extended to 20 degrees, MCPs flexed 35-40 degrees**
- C. Wrist extended to 30 degrees, MCPs flexed 40-45 degrees
- D. Wrist extended to 25 degrees, MCPs flexed 30-35 degrees

When casting for a wrist-hand orthosis (WHO), the correct joint positions are crucial to ensure optimal functionality and comfort for the patient. The chosen option specifies that the wrist should be extended to 20 degrees and the metacarpophalangeal joints (MCPs) should be flexed between 35-40 degrees. This positioning strikes an important balance between stability, function, and prevention of contractures. An extension of the wrist at this angle allows for effective use of the digits while also facilitating activities of daily living. The MCP joints being flexed at 35-40 degrees provides enough flexion to maintain finger functional grasp while avoiding excessive tightening of the tendons and muscles, which could lead to stiffness and reduced mobility. This specific positioning helps to maximize both comfort during wear and functional use, allowing individuals to engage in necessary activities without being hindered by their orthotic device. Achieving the proper positioning is central to the design and effectiveness of wrist-hand orthoses, as it impacts the overall rehabilitation process and quality of life for the patient.

### 4. What forces act on the knee during single limb stance?

- A. Compressive forces from hip extensor muscles
- B. Valgus thrust on knee secondary to lateral shift**
- C. Tensile forces from knee flexors
- D. Normal contact forces from the ground

During single limb stance, the knee experiences various forces that impact its stability and function. The correct answer emphasizes the valgus thrust on the knee, which can occur due to a lateral shift of the body's center of mass. This lateral shift often happens when a person is standing on one limb, leading to an increased lateral load on the knee joint. In this scenario, the forces from other parts of the body, particularly the hip and torso, may create a mechanical advantage that leads to a valgus moment at the knee. This necessitates effective management by the knee's soft tissue structures and ligaments to maintain proper alignment and prevent injury. The other choices pertain to different types of forces that may not be as directly relevant in this specific context. Compressive forces from the hip extensor muscles are generally felt during activities involving hip extension rather than standing alone, while tensile forces from knee flexors are mainly engaged during knee flexion, not in a static stance. Normal contact forces from the ground do exist but do not specifically highlight the unique mechanics involved in a single limb stance as does the valgus thrust. Thus, the emphasis on the valgus thrust is key in understanding the forces acting on the knee in this particular position.

**5. What are the two posterior channel deficits in a double action ankle joint?**

- A. Foot drop and hyperextension**
- B. Crouching and knee instability**
- C. Plantarflexion and eversion**
- D. Knee flexion and hip extension**

The correct choice identifies the deficits associated with a double action ankle joint effectively. In the context of orthotic and prosthetic practice, a double action ankle joint allows for both plantarflexion and dorsiflexion movements. Foot drop, which refers to the inability to lift the front part of the foot due to weakness or paralysis of the muscles that control dorsiflexion, is a common deficit encountered when there's dysfunction in the posterior channels. This condition can lead to difficulties in walking, as the foot can drag on the ground. Hyperextension is another critical deficit that can occur when the ankle fails to stabilize correctly during the stance phase of walking. This situation can lead to an increased range of motion at the knee and cause instability, contributing to abnormal gait patterns or even falling if not properly managed with supportive devices or orthotics. Both of these deficits emphasize the importance of properly functioning posterior channels within the double action ankle joint to maintain proper lower limb mechanics and support stability during ambulation.

**6. What is the appropriate modification for a child with CP who has -5 degrees of dorsiflexion during casting for custom AFOs?**

- A. Cast in 0 degrees of dorsiflexion only**
- B. Cast in -5 degrees of dorsiflexion and plan to add an external heel wedge**
- C. Cast with an excessive heel lift only**
- D. Cast in 10 degrees of dorsiflexion**

The appropriate modification for a child with cerebral palsy (CP) who has -5 degrees of dorsiflexion during casting for custom ankle-foot orthoses (AFOs) is to cast in -5 degrees of dorsiflexion and plan to add an external heel wedge. This approach takes into account the child's existing limitation in dorsiflexion. By casting in -5 degrees of dorsiflexion, the practitioner is accommodating the child's current range of motion. This ensures that the AFO is properly fitted to the child's foot position, promoting optimal alignment and function. The addition of an external heel wedge can provide the necessary correction to improve dorsiflexion during movement without causing discomfort or compromising stability. This modification helps to create a dynamic interaction between the AFO and the child's foot, allowing for increased mobility while supporting the biomechanics required for ambulation. It addresses the specific needs of the child, facilitating better performance in activities that require ankle function.

**7. Which best describes the extension synergy pattern of the leg?**

- A. Hip flexion, adduction, internal rotation; knee flexion**
- B. Hip extension, adduction, internal rotation; knee extension**
- C. Knee flexion, external rotation; hip extension**
- D. Hip adduction, abduction; knee extension**

The extension synergy pattern of the leg is characterized by specific positions of the hip and knee during extension. In this pattern, the hip is positioned in extension, adduction, and internal rotation, while the knee is fully extended. This is often observed in patients with neuromuscular conditions, where the use of synergies is common due to impaired motor control. Understanding this synergy is key for clinicians when evaluating and assisting patients with movement disorders or after neurological events, such as strokes. Recognizing the extension pattern allows for the development of effective rehabilitation strategies, orthotic management, and the planning of physical therapy to promote better movement dynamics. This synergy is an important concept in orthotics and rehabilitation, as it directly influences how practitioners approach treatment plans and interventions designed to restore functional mobility and improve quality of life for individuals with limb movement dysfunctions.

**8. During single limb stance, the foot goes through what range of degrees for plantarflexion and dorsiflexion?**

- A. 0 degrees PF to 15 degrees DF**
- B. 5 degrees PF to 10 degrees DF**
- C. 10 degrees PF to 5 degrees DF**
- D. 15 degrees PF to 5 degrees DF**

The correct range for plantarflexion and dorsiflexion during single limb stance is crucial for understanding the dynamics of balance and lower limb mechanics. In a normal single limb stance, the foot typically experiences a shift from about 5 degrees of plantarflexion to approximately 10 degrees of dorsiflexion. This range allows for adequate stability and support, facilitating proper weight distribution over the standing limb. When in single limb stance, the body shifts its center of gravity and the ankle must adjust accordingly to maintain balance. The movement into mild dorsiflexion aids in engaging the anterior compartment muscles to stabilize the ankle and prevent the heel from lifting excessively. Such adjustments are vital for effective gait mechanics and support overall mobility. Other ranges outlined in the choices do not accurately represent the typical motions observed in a normal single limb stance. The specific degrees stated in the correct choice align well with anatomical studies and biomechanical observations that highlight the subtleties in ankle positioning during weight-bearing activities. Understanding this range is essential for clinicians and practitioners working with rehabilitative methods, orthotic design, and lower limb assessments.

**9. How far should the HALO ring be positioned above the ears and eyebrows?**

- A. 2 cm
- B. 1 cm**
- C. 3 cm
- D. 0.5 cm

The HALO ring should be positioned 1 cm above the ears and eyebrows to ensure proper stabilization and comfort for the patient. This positioning is crucial for effective immobilization of the cervical spine while also preventing discomfort that may arise from excessive pressure or inappropriate placement. When properly placed at this height, the HALO provides adequate support and immobilizes the head while allowing for functional aspects such as visual range and comfort during wear. This balance enhances the overall efficacy of the orthosis and promotes compliance in the patient.

**10. Which nerve impingement is associated with winging of the scapula?**

- A. Axillary nerve
- B. Long thoracic nerve**
- C. Radial nerve
- D. Thoracodorsal nerve

The association of winging of the scapula with nerve impingement is specifically linked to the long thoracic nerve. This nerve innervates the serratus anterior muscle, which plays a crucial role in stabilizing the scapula against the thoracic wall. When the long thoracic nerve is compromised, it can lead to weakness or paralysis of the serratus anterior, resulting in the characteristic winging appearance of the scapula during arm movement. In contrast, the axillary nerve primarily innervates the deltoid and teres minor muscles, affecting shoulder abduction and external rotation, but it does not directly impact the position of the scapula. The radial nerve is mainly responsible for wrist extension and sensation in the posterior arm and hand but does not relate to scapular positioning. The thoracodorsal nerve innervates the latissimus dorsi muscle, affecting arm extension, adduction, and internal rotation, but does not cause scapular winging. Thus, the link between the long thoracic nerve and winging of the scapula is pivotal in understanding this condition.

# Next Steps

**Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.**

**As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.**

**If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at [hello@examzify.com](mailto:hello@examzify.com).**

**Or visit your dedicated course page for more study tools and resources:**

**<https://abcorthoticprosthetic.examzify.com>**

**We wish you the very best on your exam journey. You've got this!**

**SAMPLE**