

4th Year Plumbing TQ Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What is the correct way to install a ball valve?**
 - A. In the horizontal position with the handle sideways**
 - B. In the vertical position with the handle pointing down**
 - C. In the vertical position with the handle pointing up**
 - D. In any position as long as it is secured tightly**
- 2. What is typically used to measure the performance of a gas meter?**
 - A. Cubic meters**
 - B. Cubic feet**
 - C. Gallons**
 - D. Liters**
- 3. Most resistance split phase motors typically fall into which horsepower range?**
 - A. 1/6 to 1/4 horsepower**
 - B. 1/4 to 1/2 horsepower**
 - C. 1/6 to 3/4 horsepower**
 - D. 1/2 to 1 horsepower**
- 4. What setting would you select on a multimeter to measure a flame signal?**
 - A. Volts AC**
 - B. Ohms**
 - C. Microamps DC**
 - D. Amps AC**
- 5. What are the four types of pressure tanks used in plumbing systems?**
 - A. Galvanized, floating disc, diaphragm, and bladder**
 - B. Plastic, bladder, metal, and composite**
 - C. Fiberglass, diaphragm, bladder, and concrete**
 - D. Steel, bladder, diaphragm, and poly**

6. What happens to soluble iron in a water system if not treated properly?

- A. It can improve water quality**
- B. It may cause stains and corrosion**
- C. It enhances flavor**
- D. It is harmless**

7. How can you identify a gas pipe versus a water pipe?

- A. Gas pipes are typically blue, water pipes are black**
- B. Gas pipes are usually yellow or black, water pipes are blue or green**
- C. Gas pipes are silver, water pipes are gold**
- D. Gas pipes are green, water pipes are grey**

8. What is the minimum allowable diameter for a floor drain?

- A. 1 inch**
- B. 2 inches**
- C. 3 inches**
- D. 4 inches**

9. Which of the following methods is used to determine the capacity of a sewage holding tank?

- A. Volume measurement**
- B. Flow rate analysis**
- C. Usage forecasting**
- D. All of the above**

10. What does a high level of nitrate in a water supply typically indicate?

- A. Industrial contamination**
- B. Animal or human waste contamination**
- C. Heavy metal contamination**
- D. Excessive fertilizer use**

Answers

SAMPLE

1. C
2. B
3. C
4. C
5. A
6. B
7. B
8. B
9. D
10. B

SAMPLE

Explanations

SAMPLE

1. What is the correct way to install a ball valve?

- A. In the horizontal position with the handle sideways
- B. In the vertical position with the handle pointing down
- C. In the vertical position with the handle pointing up**
- D. In any position as long as it is secured tightly

Installing a ball valve correctly is vital for ensuring proper function and longevity. For a ball valve to operate optimally, it should be installed in a way that allows for easy access to the handle while also ensuring the valve operates smoothly. When a ball valve is installed vertically with the handle pointing upwards, it allows for easy identification and access to the valve. This positioning also minimizes potential complications that arise from gravity affecting the valve's operation. Having the handle point upward ensures that no debris can collect in the ball valve itself, which could hinder its functioning. Additionally, while there are many configurations that can seem acceptable at a glance, the safest and recommended practice is to follow industry standards designed to promote the best performance and reliability of the plumbing system as a whole. This installation helps maintain the integrity of the valve and ensure that it can effectively control the flow of water.

2. What is typically used to measure the performance of a gas meter?

- A. Cubic meters
- B. Cubic feet**
- C. Gallons
- D. Liters

The performance of a gas meter is typically measured in cubic feet. This unit measures the volume of gas that passes through the meter, which is essential for determining consumption and billing in residential and commercial settings. Gas services are designed to account for the cubic volume of gas delivered, and using cubic feet provides a standardized measure that is widely accepted in the industry for billing purposes. This ensures that there is uniformity and clarity in transactions between gas suppliers and consumers. Other measurement units such as gallons or liters are not standard for gas measurement, as they are more commonly used for liquid volumes. Cubic meters are used in some contexts but are less common in the United States where gas meters predominantly report in cubic feet. Thus, cubic feet is the correct choice here for measuring gas meter performance.

3. Most resistance split phase motors typically fall into which horsepower range?

- A. 1/6 to 1/4 horsepower**
- B. 1/4 to 1/2 horsepower**
- C. 1/6 to 3/4 horsepower**
- D. 1/2 to 1 horsepower**

Most resistance split phase motors are commonly found in the range of 1/6 to 3/4 horsepower. This range reflects the typical applications for which these motors are well-suited, such as in small appliances, fans, pumps, and tools. In this context, resistance split phase motors operate effectively within this horsepower range due to their design, which incorporates a starting winding that is disconnected by a centrifugal switch once the motor reaches a certain speed. This design limits the power output and efficiency compared to other motor types, making them ideal for lightweight applications that do not require high horsepower. The other ranges proposed do not align with the characteristics and intended use of resistance split phase motors, as they usually operate outside the limits of the horsepower indicated in those choices. The range of 1/6 to 3/4 horsepower captures the essence of the motor's use in practical scenarios, ensuring appropriate performance and reliability for designated applications.

4. What setting would you select on a multimeter to measure a flame signal?

- A. Volts AC**
- B. Ohms**
- C. Microamps DC**
- D. Amps AC**

To measure a flame signal, selecting the microamps DC setting on a multimeter is appropriate because flame sensors typically generate a small electrical current in the microamp range when a flame is present. This small direct current indicates the presence of the flame to the control system of a gas appliance. In contexts such as gas burners or furnaces, the flame sensor sends a signal that helps maintain safe operation. The use of microamps DC specifically allows for the detection of very low current levels produced by the flame, which most accurately represents the activity of the flame safety system. Other settings on the multimeter are not suitable for this application. Measuring volts AC would be useful for measuring alternating current voltage, commonly found in household wiring but not for a flame signal. The ohms setting is ideal for checking resistance in circuits, which is not relevant for measuring a signal current. Lastly, measuring amps AC would apply to alternating current usage, typically not related to the direct current signal outputs from flame sensors. Therefore, selecting microamps DC is essential and accurate for monitoring flame signals in plumbing and HVAC systems.

5. What are the four types of pressure tanks used in plumbing systems?

- A. Galvanized, floating disc, diaphragm, and bladder**
- B. Plastic, bladder, metal, and composite**
- C. Fiberglass, diaphragm, bladder, and concrete**
- D. Steel, bladder, diaphragm, and poly**

The four types of pressure tanks used in plumbing systems are indeed galvanized, floating disc, diaphragm, and bladder. Understanding these types can provide critical insights into how pressure tanks function and their applications within plumbing systems. Galvanized tanks are made from steel and are coated with zinc to prevent rusting, which is essential for durability and longevity in various environments. Floating disc tanks utilize a floating mechanism to maintain a certain level of water, while diaphragm tanks separate the water and air compartments with a flexible diaphragm, helping to maintain consistent pressure. Bladder tanks are similar to diaphragm tanks but use a bladder to separate the two fluids, allowing for expansion and contraction without causing pressure spikes. Each type of tank serves specific systems and requirements, such as varying water pressures and volumes. The other options contain materials and descriptions that do not accurately represent the commonly recognized types of pressure tanks in plumbing, thereby clarifying why those are not the correct answer. Understanding the distinctions among the various tanks is beneficial for ensuring adequate water pressure and system efficiency in plumbing installations.

6. What happens to soluble iron in a water system if not treated properly?

- A. It can improve water quality**
- B. It may cause stains and corrosion**
- C. It enhances flavor**
- D. It is harmless**

When soluble iron is not treated properly in a water system, it can lead to stains and corrosion. This occurs because, in the presence of oxygen and other elements, soluble iron can oxidize and precipitate out of the water, resulting in reddish-brown stains on plumbing fixtures, laundry, and even dishware. Additionally, the corrosion of pipes and fixtures can be exacerbated by the presence of iron, which can lead to costly repairs and replacements. Treating soluble iron effectively helps to prevent these issues, ensuring a cleaner, more reliable water system while maintaining the integrity of the plumbing infrastructure. Proper treatment methods, such as filtration or the use of oxidizing agents, can mitigate these problems and maintain water quality.

7. How can you identify a gas pipe versus a water pipe?

- A. Gas pipes are typically blue, water pipes are black
- B. Gas pipes are usually yellow or black, water pipes are blue or green**
- C. Gas pipes are silver, water pipes are gold
- D. Gas pipes are green, water pipes are grey

Identifying gas pipes versus water pipes is critical for safety and functionality in plumbing systems. The correct answer, which states that gas pipes are usually yellow or black, and water pipes are blue or green, aligns with the color coding standards commonly used in the plumbing industry. Gas pipes often use yellow or black to clearly indicate the presence of natural gas or propane. This color coding helps prevent confusion and potential hazards during installation and maintenance. Water pipes, distinguished by blue or green colors, signify the delivery of potable water, making it easier for plumbers and technicians to identify the specific type of pipe they are working with. The importance of these color distinctions lies in their role in preventing dangerous mistakes, such as connecting gas appliances to water lines or vice versa. Proper identification based on established color codes enhances safety, particularly in complex plumbing systems where multiple utilities might be present.

8. What is the minimum allowable diameter for a floor drain?

- A. 1 inch
- B. 2 inches**
- C. 3 inches
- D. 4 inches

The minimum allowable diameter for a floor drain is 2 inches. This sizing is established to ensure proper drainage and to prevent blockage. A 2-inch diameter is typically adequate to handle the flow of wastewater from most floor areas in residential and light commercial settings while also accommodating debris that may enter the drain. Using a diameter larger than the minimum can help in areas where higher flows of water are anticipated or where larger debris may be present, but the 2-inch diameter serves as a baseline in plumbing codes for standard applications. This sizing aligns with industry standards and best practices in plumbing design, ensuring efficiency in waste removal and compliance with building regulations.

9. Which of the following methods is used to determine the capacity of a sewage holding tank?

- A. Volume measurement**
- B. Flow rate analysis**
- C. Usage forecasting**
- D. All of the above**

When determining the capacity of a sewage holding tank, it is essential to consider multiple methods to gain a comprehensive understanding of its operational capabilities. Volume measurement is a direct approach, where the physical size of the tank is assessed, often calculated by the tank's dimensions. This provides a straightforward metric of how much sewage the tank can hold. Flow rate analysis examines the rate at which sewage enters the tank, which can affect its overall capacity in terms of how quickly it fills up. Understanding flow rates helps in predicting when the tank will reach its capacity based on current or projected usage. Usage forecasting considers the anticipated demand on the tank based on factors like seasonal variations, population growth, or specific events that may increase sewage flow. This enables planners to design systems that accommodate future needs rather than just current measurements. Using all these methods together provides a well-rounded picture of a sewage holding tank's capacity, ensuring that it meets both present and future requirements effectively. This multifaceted approach is critical in plumbing design and management practices to ensure a reliable sewage system.

10. What does a high level of nitrate in a water supply typically indicate?

- A. Industrial contamination**
- B. Animal or human waste contamination**
- C. Heavy metal contamination**
- D. Excessive fertilizer use**

A high level of nitrate in a water supply typically indicates the presence of animal or human waste contamination. Nitrates can enter the water system from various sources, but one of the most significant contributors is the breakdown of organic material found in human sewage or agricultural runoff from animal waste. When these waste products decompose, they release nitrates into the surrounding environment, which can then leach into groundwater or surface water supplies. This is particularly concerning because elevated nitrate levels in drinking water can pose health risks, especially to infants and pregnant women, potentially leading to conditions such as methemoglobinemia, or "blue baby syndrome," where oxygen transport in the blood is impaired. Other sources such as industrial contamination, heavy metal contamination, and excessive fertilizer use, while they can contribute to water quality issues, are not primarily indicated by high nitrate levels. Instead, they might typically show different contaminants and pollution indicators, leading to different remedial actions or health concerns.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://4thyplumbingtq.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE